
OT FILE COPY
AD-A223 262

:' CECOM

CENTER FOR SOFTWARE ENGINEERING

ADVANCED SOFTWARE TECHNOLOGY

Subject: Final Report - Real-Time Ada Problem
Solution Study

O, ?

SEP 201989

CIN: CO2-92LA-OO6-uv -rlD

24 MARCH 1989

DISTRIBUTC' 7 -:-. ; ,T 8 9 4 2 3 1

Approved re']. i S .-;

EXECUTIVE SUMMARY,
The purpose of this study was to identify and document solutions
to some of the problems that can occur during the development
and implementation of real-time embedded Ada applications. The
generic Ada problems that are addressed in this report were
defined in a previous study.

'The study was performed using a three-step approach. During the
first phase, theoretical solutions were proposed for the generic
Ada problems. These theoretical solutions were based on actual
Ada development experience and our understanding of the Ada
language and its runtime system (RTS). During the second phase,
Ada developers that had current or recent experience in
developing Ada projects were interviewed to provide empirical
solution data. To complete the study, the theoretical and actual
solutions were compared, the similarities and differences between
these solutions were analyzed, and this data was used to develop
conclusions and recommendations.-

<As a result of this study, a number of solutions were identified
for the generic Ada problems. Some of the solutions are purely
theoretibal and may or may not be practical. Other solutions are
proven, having actually been implemented by Ada developers on
their projects. The solutions were categorized according to
their characteristics: short-term vs. long-term, preventive vs.
remedial, and approach (technical, management, tools, or
methodology). 2 ,

The overall results of the study are:

1) Ada compiler and support tool improvements are reducing (but
not yet eliminating), the need to use certain alternate methods
to improve system performance for Ada applications. These
alternate methods include modifications of the Ada compiler and
runtime library (RTL) by the Ada developers and compiler vendors,
restricting the use of certain Ada features (such as tasking),
and extensive system optimization to improve performance.

2) Ada developers are willing to modify and/or customize their
Ada runtime libraries (RTLs), using either in-house resources or
support from compiler vendors, to obtain performance
improvements.

3) Ada developers are providing comprehensive training to their
employees to improve their productivity and ensure that the
development team uses the Ada language in an efficient and
effective manner. The training includes language usage,
methodologies, tool usage, and management issueL.

4) Now that more Ada projects are being and have been performed,
there is a larger base of information concerning standards and
guidelines for Ada usage, as well "lessons learned". A number of
developers are taking advantage of this information for use on

their own projects.

TABLE OF CONTENTS

1. INTRODUCTION .. I

1.1 Purpose .. 1
1.2 Terminology 1
1.3 Report Organization 1

2. TECHNICAL DISCUSSION. 2
2.1 Generic Real-Time Ada Problems 3
2.2 Solutions and Avoidance Techniques 4
2.3 Technical Findings 4

2.3.1 LACK OF KNOWLEDGE CONCERNING ADA RTE 13
2.3.2 IMPACT OF ADA COMPILER IMPLEMENTATION

DIFFERENCES 16
2.3.3 IMPACT OF INTERRUPT HANDLING OVERHEAD 19
2.3.4 IMPACT OF MEMORY MANAGEMENT OVERHEAD-..... 22
2.3.5 IMPACT OF RUNTIME SYSTEM OVERHEAD..........24
2.3.6 IMPACT OF TASKING OVERHEAD................. 26
2.3.7 INEFFICIENCY OF OBJECT CODE GENERATED BY

ADA COMPILERS 30
2.3.8 REQUIREMENTS FOR EXTENSIVE ADA
I OPTIMIZATION33

2.3.9 INADEQUATE DEBUGGING CAPABILITIES PROVIDED
BY CURRENT DEBUGGERS....................... 36

2.3.10 ADA EXCEPTION HANDLING 38
2.3.11 INEFFICIENCIES IN USING GENERICS 40
2.3.12 INABILITY TO PERFORM INDEPENDENTLY OF

THE RTS..... 42
2.3.13 LACK OF A DISTRIBUTED RUNTIME LIBRARY

(RTL).. .. 44
2.3.14 INABILITY TO PERFORM SECURE ADA

PROCESSING 46
2.3.15 DIVERSITY IN IMPLEMENTATION OF APSEs 48
2.3.16 POOR PERFORMANCE OF ADA TOOLS 51
2.3.17 DIFFICULTY IN BENCHMARKING ADA SYSTEMS 53
2.3.18 LACK OF ADA SOFTWARE DEVELOPMENT TOOLS 56
2.3.19 ADA LANGUAGE COMPLEXITY 59
2.3.20 CUSTOMIZATION OF THE RUNTIME LIBRARY 61
2.3.21 LACK OF EXPERIENCED ADA PROGRAMMERS 63
2.3.22 EXTENSIVE ADA TRAINING REQUIREMENTS.......67
2.3.23 INACCURACY OF COST/SCHEDULE ESTIMATES

FOR ADA PROGRAMS 70
2.3.24 LACK OF ESTABLISHED ADA SOFTWARE

DEVELOPMENT METHOD 74
2.3.25 LACK OF ESTABLISHED ADA STANDARDS AND

GUIDELINES 77
2.3.26 PRODUCTIVITY IMPACTS OF ADA............... 80
2.3.27 IMPACT OF CONSTRAINT CHECKING ON SYSTEM

PERFORMANCE 83
2.3.28 INABILITY TO ASSIGN DYNAMIC TASK

PRIORITIES 85
2.3.29 INABILITY TO PERFORM PARALLEL PROCESSI 1G.. 87
2.3.30 LACK OF SUPPORT FOR LOW LEVEL OPERATIONS..89

2.3.31 INABILITY TO PERFORM TASK RESTART 91
2.3.32 INABILITY TO PERFORM CYCLIC SCHEDULING

IN ADA 93
2.3.33 LACK OF FLOATING POINT COPROCESSOR

SUPPORT 95
2.3.34 INABILITY TO RECOVER FROM CPU FAULTS

IN ADA 97
2.3.35 IMPACT OF ADA COMPILER VALIDATION ISSUES..99
2.3.36 INABILITY TO PERFORM ASYNCHRONOUS TASK 101
2.3.37 LACK OF IMPLEMENTATION OF CHAPTER 13

FEATURES 103
3. ANALYSIS AND CONCLUSIONS 1053.1 Analysis 105

3.2 conclusions....... 105

4. RESULTS AND RECOMMENDATIONS 107
4.1 Results 107
4.2 Recommendations................................ 108

APPENDIX A: DEFINITIONS 110
APPENDIX B: REFERENCES 113

TABLE OF FIGURES

FIGURE 1: THEORETICAL SOLUTIONS FOR GENERIC
ADA PROBLEMS 5

FIGURE 2: ACTUAL SOLUTIONS FOR GENERIC
ADA PROBLEMS 9

FICZ72E 3: PROBLEMS SOLUTIONS RESULTS 108-1
to

108-6

1. INTRODUCTION

1.1 Purnose

The purpose of this report is to identify and document solutions
to some of the problems that can occur during the development and
implementation of real-time embedded Ada applications. The
problems that are being addressed were identified in previous
studies and papers [Soni87, Fran87, Labt87, McCu88]. The
solutions provided in this report consist primarily of preventive
(avoidance) techniques and direct responses to actual problems.

1.2 Terminoloqv

The definitions given in DoD Standard 2167A [DoD88] and the ANSI
IEEE definitions (ANSI83] apply to all terms used in this report.
Additional terms are defined in Appendix A.

1.3 Report Organization

Section 1 explains the purpose of this report.

Section 2 discusses the technical approach and the technical
findings of the study.

Section 3 contains an analysis of the solutions that were
obtained during the study and an analysis of the correlation
between the theoretical and actual solutions.

Section 4 presents the results that were obtained during this
study and our overall recommendations, based on the study
results.

Appendix A contains a definition of terms were used in the report.

Appendix B contains a list of references for other documents that
were used as sources of information for the study.

1

2. TECHNICAL DISCUSSION

A four-step approach was used to perform this study:

1) Define theoretical solutions and avoidance techniques that
are potentially usable for generic real-time Ada problems.

2) Interview participants of actual Ada projects to confirm
or disprove the theoretical findings and to possibly add new
solutions and avoidance techniques for some of the problems.

3) Summarize the findings of the investigation in a matrix of
generic real-time Ada problems vs. types of solutions or
avoidance techniques.

4) Enter the information obtained from the study into the
data base that was established to contain information
concerning Ada problems and solutions.

As a result of this study, a number of solutions were identified
for the generic Ada problems. Some of the solutions are purely
theoretical and may or may not be practical. Other solutions are
proven, having actually been implemented by Ada developers on
their projects.

In some cases, the theoretical and actual solutions for a
particular problem are fairly similar. In most cases, this means
that the theoretical solutions were pretty accurate; a certain
amount of this was expected due to the extensive actual Ada
experience of the principal investigators. In those cases where
the theoretical and actual solutions were significantly
different, this could mean that project-specific circumstances
caused the implementation of a solution that may not have been
obvious initially or that the proposed theoretical solution(s)
were not sufficient. Analysis was performed to determine the
meaning of the study results.

The types of solutions identified during the study fell into
three categories:

1) Solution Method(s)

Technical - Requires modificaticn or enhancement of the
application software design or implementation.

Methodology - Requires modification or enhancement of the
software development methodology to reflect the
characteristics of the Ada application.

Tools - Requires modification or enhancement of the Ada
compiler, runtime library (RTL) or support tools.

2

Management - Requires modification or enhancement of the

project management approach to address Ada issues.

2) Solution Timeframe

Short-term - The solution will provide results in less than
one year. Provides a quick fix but may have adverse or
unknown long-term impacts.

Long-term - The solution takes longer than one year to
provide results. Provides an eventual solution but may have
delayed, adverse, or unknown short-term impacts.

3) Solution Approach

Preventive - Used to prevent a problem from occurring.

Remedial - Used to solve a problem once it occurs.

2.1 Generic Real-Time Ada Problems

The Ada programming language is fast becoming a viable real-time
programming language for communications, avionics, space and
other important areas. Ada was mandated by the military [DoD87]
for its real-time projects, but commercial applications are
finding Ada the language of choice for many large projects--
especially those with over one million lines of code.

Paragraph 2.3 will define the 37 generic real-time Ada problems
found in early weapon system applications experience. Not all
p.oblems encountered by real-time Ada developers were directly
related to the language. In fact, one particular problem showed
every symptom of an Ada runtime support library problem--that is,
until a system verification by Intel proved otherwise. So, it was
not until problems were traced to unique Ada features that they
were called Ada problems.

Each Ada problem was considered generic after it had been
reported by more than one source. In adHition, problems that
stemmed from a common cause were grouped together as symptoms of
the root problem. For example, problems were identified in using
several Ada project support environment tools, but these were
grouped together to form a single problem (#16). In this way the
original set of hundreds of problems was reduced to a more
manageable set of 37.

3

2.2 Solutions and Avoidance Techniaues

There are three ways to overcome an Ada problem which is
impacting project development goal-:

1) Solve the problem within the bounds of accepted software
engineering principles. _

2) Avoid the problem by choosing a development approdch
within the bounds of accepted software engineering
principles.

3) Work around the problem, violating accepted software
engineering principles in the process.

Because the third approach often causes worse problems than it
solves, this study will focus on the first two approaches,
problem solutions and problem avoidance techniques.

2.3 Technical Findings

Figure 1 presents a matrix of gjneric real-time Ada problems
vers-s the types of theoretical solutions or avoidance techniques
that address them.

Figure 2 presents a matix of generic real-time Ada problems vs.
the actual solutions obtained from the interviews with Ada
developers.

In the subparagraphs below, each generic real-time Ada problem is
defined and each theoretical or actual solution or avoidance
technique shown by an "X" in Figures 1 and 2 is described.

4

ILI. I I I I

tM I IIII I
I W I

J I

I 1A I I

Ii I

c I I

h tIII I I1

z4 I

v i I I= x I I = I Z
=1 I Z 1 I1 Z

I z 1Z z z IIt
I

Z I

It I

I I I

WI- 'A 1t I I I W I I "I1- I
A.1 01 I 1 t I WI I C&!

0.1 1I j 1 I I; ug I L . "

I &IW & I - A. a 0 0 1I 0
U. I1 1 I % I I A.%

'I IIC" I b I "=OI IQ

bil b WI w I I t NI V n "1

a I. I I I I Iwil

C ii I I1 5 : 14b u 21 5 1 1N-jl6A I I I

O N ZUiW0 1 u II= I LI9 4tI $. a I3!"1"
o f I l o " A I C 2 2 I 0

Ic cc IL u I

Ul Ii I W ccI

ZI ~ c I A I I= u : c " eim CI IL * I r

Ii I. I I l- 0 & I ==I W c I ZI

lc 9V S o 1EI N I I Iom o I,2,0
I Z. cc I

I. lo Ia u II I 1 I. ..

Iac : 110 I I~u b I
ccI L4 I I c Z I Iz cc a l I

hac a I II II
IM MN bI I I3

16 III

h
c; 1 1 V

soI !Z

x I I I I I

It x XX I XX I

IA1
16 i Ix x I x x x

Wo

VI a 26t

1 16 -t ~ IIbi brRI 11 1AII

W c

caI I
t aI I Iaw ufiflfflvl

hi 1 &1~

I'M H I5ul£ cz

I cXI W IC os j " .M .

~= = I=81,
x

S.Ai Il

, I 2

I I l

I ii IIi

1 I

all bil;
I"I

s " i I to' 11AI

'A U " I W'a

111tat
zi$.x~ I lII'k

7

"I t

El I Ixi xx
II

-+ , " ' I l
Io I ooIJ Z

IXI

I I I "' b'

I IIIi

ta

1 I U A I UP13 30
Nso aa, A f~~

H I

6021 1 No
6o I I a 31

I,11zH
gil Hwo ;

tj NI U I.

U~~~m %.l '*~ b-4U 3

0. & & iI b N 1.2 1 EV% 11 b.b W 41

-A - 9- 1-U-

gwu2 HIM I bI I z

8

IL I

u w I'A I I
I~~~ Z

; II III

POOI I I I a
E_ I I

Z za I Z ZI ~ I I I Zcc I I I I I Z I

ZI I a aa
ZI I

i I Iz= I II

Iu I I

J II I
,cm 1 2 I1110

I II I I I

a i m I1 a, "I " I a
1I 11c ca I I M I I 9 E '

ob l W " &. a I ix a 1 0 Cc
b= j I3 I I ' I I IC 16 s x au

UI r it 8 ; I ccI -1. 1 og Ib. I %nwE tai I -I I a wc I" I b.wn E 11
a dI ' I = Il I b.IdgI

IceI I I~v 6 I ' a w a "I I I ow " Ime Z M V I
U.a IZ a 51 a n mz b m i

a4S 11 2 =k l lb . C. a.I m I Ivo 1 a t a
aI Z I ' I W NI: 'I e

Ii "' 1
I 11-b03& 1 a 0 1 30 1 I l W I

uu lI. w I gu lIb5j..d ~ lu " "4 I "a
I- I if 1 1C 1 I1 CU ilsU IE 1

"""M .. 4 I.a~m &Gi 1"e"4 !!3!5!5

ba Iaa

a a a 2 A.I

X zJ Xl

112 Ii i

II!X I IzX X

I- 'A AfIab

bI INN I
Hi I ig W!

AI I

o NJ
.6 i. 1. . bz N : .

. I ig

i I St a

Nov I Ifo o* o '

10

a &W w I A C a

I
V

RW: Af I
I I. h. N I

a %A
0 lb V IAIX

I~I!

iwb In wz. nn: L
I.. .V k

a 2w P2iw ICZ .
1.01 . bdpo 0 i -

2 X4~.

j I

I W .1.1 1 Cog
sw I I I

I! I o I "le

sac 111131VN I I i

Min I'Al1

Z 1Z -II = IC

I ~ i 12

2.3.1 LACK OF KNOWLEDGE CONCERNING ADA RTR

2.3.1.1 Problem Definition

The Ada language provides a very complex, powerful,
and sophisticated runtiie system to support such Ada
features as memory management, process control, and others.
The primary element in the Ada-supplied runtime system is the
Run-Time Library (RTL). The RTL performs a number of
activities which include:

* Memory Management
Dynamic memory allocation/deallocation
Garbage collection

* Process Scheduling
Task activation/deactivation
Task scheduling
Task rendezvous

* Resource Control
Resource scheduling

- Resource monitoring

* Error Processing (exception handling)

The RTL resides in the target environment during system
operation and operates in conjunction with the applications
software.

The performance of the RTL affects the performance of the
applications programs (tasking, memory management, interrupts,
etc.). The RTL is also part of the system debug/testing
process since it resides in the target environment. The RTL
may require customization as part of the system optimization
process. The RTL may need to be benchmarked to obtain an
accurate estimate of system performance.

The information concerning the RTL characteristics is vital to
the applications developers, since they must address the impact
of the RTL during system design and implementation. If this
information is not made available to the applications
programmers, there is little hope that the system being
developed will perform as expected. To date, the Ada
compiler vendors have provided little information to the Ada
applications developers concerning the detailed sizing, timing,
performance, and functional characteristics of the RTL.

13

2.3.1.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution 1 - Obtain consulting support from the compiler
vendor or another source, such as a consultant or a company
that has experience with the selected Ada runtime system
(RTS). The vendor support can consist of Ada RTS training,
providing "on-call" support to answer specific questions, and
reviewing the developer's design and implementation to
evaluate its interaction with the RTS. This support can
provide the development team with real-world information
concerning the capabilities and performances of the runtime
system.

Solution Method - Management
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 2 - Acquire runtime library (RTL) documentation from
the compiler vendor or another source. The compiler
vendor can supply documentation which includes
functional and design specifications for the runtime
software, relevant benchmark and performance data, and
source code (if available). Other Ada developers can
provide actual benchmark and performance data from similar
projects.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution _I - Allocate project resources to become familiar
with the RTS. This solution involves the creation of a
project team that is tasked to become intimately familiar
with the selected Ada runtime. This team of *gurus" provides
formation concerning the functionality and timing of the RTS to
the development team for use in the design and implementation
efforts. This solution can also require the allocation of
project computing resources for use in performing RTS
benchmarks.

Solution Method - Management
Solution Timeframe - Short-term
Solution Approach - Preventive

2.3.1.3 Actual Industry Solutions

14

Solution 1 - Develop a strong knowledge of the Ada RTS. One
interviewee stated that his company had gained an in-depth
knowledge of the Ada runtime environment because they develop
Ada runtime systems as one of their products. This knowledge
was particularly useful during the debugging phase, since the
RTL code is interleaved with the user code, and any attempt to
trace program execution leads the developer into the RTL code.

Solution Method - Technical
Solution TimefrAme - Short-term
Solution Approach - Preventive

Solution 2. - Obtain the source code and documentation for the
RTL from the compiler vendor. One interviewee stated that his
company had obtained its knowledge of the runtime environment
by reviewing the source code and documentation. This allowed
them to more accurately the assess the functional and
performance impact of the RTS on the application.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution . - Develop a team of Ada "gurus" that have intimate
knowledge of the selected RTS. One interviewee stated that the
personnel selected for their team of Ada "gurus" had experience
with Ada and assembly language, reflecting the fact that their
RTL was written using a combination of these two languages.
These personnel also worked closely with the compiler vendor to
ensure that their information was accurate.

Solution Method - Management
Solution Timeframe - Short-term
Solution Approach - Preventive

15

2.3.2 IMPACT OF ADA COMPILER IMPLEMENTATION DIFFERENCES

2.3.2.1 Problem Definition

The differences in Ada compiler implementation can impact the
performance of an Ada application. The ACVC tests that are
used by the AJPO to validate candidate Ada compilers primarily
verify the functional and syntactical aspects of the compilers,
they do not address performance and implementation issues.
Between this and the optional implementation issues discussed
in Chapter 13 of the Ada Language Reference Manual, a compiler
vendor has some flexibility in determining a compiler
implementation approach. The areas in which the impacts of
compiler implementation differences are most likely to be
observed are:

* The efficiency of the generated Ada object code

* The size of the RTL

* The runtime overhead associated with the RTL

* Implementation of language features (tasking,
generics, etc.)

* Compilation speed (lines of code per minute)

Differences in compiler implementation can have an effect on
system performance. They can cause a reduction in system
efficiency, thus requiring additional system resources
(hardware and software). Impacts can also be felt in the areas
of system maintainability (for both the compiler and the
applications software) and in modifications that must be made
to other Ada support tools (such as the debugger) to reflect
the compiler implementation differences.

2.3.2.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

16

Solution 1 - Minimize dependence of the design on
compiler implementation details. The Ada software
should be designed so that system functionality and
performance depend as little as possible on the
implementation details of the compiler and Ada RTS. These
details include data representation formats, implementation of
Ada constructs, and utilization of the underlying hardware
architecture. This solution improves the maintainability and
portability of the resulting software.

Solution Method - Technical
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 2 - Evaluate the differences between compiler
implementation features as part of the compiler selection
process. The implementation details of the candidate Ada
compilers should be analyzed and evaluated to determine
their potential impact, if any, on system performance. The
details that should be evaluated include the implementation of
tasking (probably the most critical), interrupt handling,
memory management, generics, and other features. The results
of this evaluation can be used by the developers to select a
compiler that is best suited for their project.

Solution Method - Tools
Solution Timeframe - Long-term
Solution Approach - Preventive

Solution I - Select alternate compilers that have similar
implementations. If the compiler that is originally selected
for use on a project does not meet specified requirements, an
alternate compiler may have to be selected. The use of a
replacement compiler that is similar to the original compiler
implementation can minimize the changes that must be made to
the Ada application.

Solution Method - Tools
Solution Timeframe - Long-term
Solution Approach - Preventive

2.3.2.3 Actual Industry Solutijns

Solution ! - Use an Ada compiler for software development that
is similar to that used for software implementation. One
interviewee stated that he had prototyped critical parts of his
application, using an interim compiler, and then switched over
to the implementation compiler as it was available. While
using the interim compiler, the interviewee used a subset of
the Ada language to minimize the amount of throwaway code.

Solution Method - Tools
Solution Timeframe - Long-term
Solution Approach - Preventive

17

Solution 2 - Attempt to standardize some of the more critical
implementation details for current Ada compilers. This
standardization could include areas such as interfaces to the
RTL, implementation of tasking, and otlers. A number of the
interviewees recommended this solution. This solution is very
difficult to implement because of the inability to mandate
compiler designs; however? there are efforts currently underway
to recommend and implement some of this standardization.

Solution Method - Tools
Solution Timeframe - Long-term
Solution Approach - Preventive

18

2.3.3 IMPACT OF INTERRUPT HANDLING OVERHEAD

2.3.3.1 Problem Definition

With the embedded system being the primary target for the use
of the Ada language, the efficient handling of interrupts
becomes a major issue. Interrupts can be defined as hardware or
software signals that stop the current processes of the system
under specified conditions and in such a way that the processes
can be resumed.

In the embedded system environment, interrupts are critical to
the ability of the system to respond to real-time events and
perform its required functions. Interrupts, in general, signal
the occurrence of some predefined event to the embedded system.
The embedded system must then perform the correct functions
in some determined amount of time. Therefore, any overhead
time, time spent on processes that are over and above the
required processes, will degrade the ability of the embedded
system to meet its functional requirements. To better illustrate
the problem, please note the following:

------ B ------------- >< ------------- C ------------- >
A

A : Represents the occurrence of a interrupt.

B : Represents the overhead time required to stop the
current process and switch to the interrupt
handler process.

C : Represents the time spent performing the required
processes in response to the interrupt.

The problem that exists with Ada today is the overhead time "B"
that is required in a Ada program to stop and switch to the
interrupt handling process is too large and in many cases
unacceptable for embedded system applications. Currently, Ada
programs have overhead times in the hundreds of microseconds to
milliseconds. The non-Ada embedded system application overhead
times have been in tens of microseconds or less.

19

2.3.3.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution 1 - Use "fast" interrupts with limited context
switching, when feasible. For a number of the current Ada
compilers, the time required to service interrupts can be
improved through the use of the "fast" interrupt feature, which
is an interrupt which performs limited context switching. If
the use of this feature is still not enough to provide adequate
performance, the developer can request that the compiler vendor
further streamline the Ada interrupt handler. The developer
can also write a project-specific interrupt handler which
replaces the one supplied in the Ada runtime environment,
although this can be a difficult task.

Solution Method - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution 2 - Perform interrupt benchmarking and early
prototyping to provide performance information to system
developers. Early identification of potential performance
problems due to Ada interrupt processing would allow the
development team to incorporate this overhead into the
system design.

Solution Method - Technical
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution I - Obtain interrupt performance information for use
in selecting a compiler. The Ada compiler that is selected
for use on the project should be evaluated to determine whether
the interrupt handling performance is sufficient for the
intended application. This can be done via simulations and
benchmarking, once the compiler is available.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 4 - Minimize the amount of interrupt processing that
is performed. In some cases, system overhead can be
reduced by restricting the use of interrupts to those
situations where they are absolutely necessary. System
overhead can also be reduced by minimizing the processing that
is performed during interrupt servicing.

Solution Method - Technical
Solution Timeframe - Short-term
Solution Approach - Preventive

20

2.3.3.3 Actual Industry Solutions

Solution .1 - Modify the RTL to reduce the overhead associated
with handling interrupts through the use of tasks. One
interviewee stated that he modified the RTL to handle
interrupts via a user-de~reloped interrupt service routine
instead of an Ada task, thus reducing the overhead due to
context switching. However, this should be done carefully
because streamlining the Ada interrupt handling process results
in a loss of functionality, which could impact other areas of
the application.

Another interviewee stated that the compiler vendor had
provided a mechanism to reduce interrupt handling overhead by
using interrupt vectors rather than interrupt queues (via
tasks).

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution 2 - Use a compiler which provides "fast" interrupt
procesoing. A number of interviewees stated that they were
able to obtain compilers which provided this feature through
the use of compiler pragmas.

Solution Method - Technical
Solution Timeframe - Short-term
Solution Approach - Preventive

21

2.3.4 IMPACT OF MEMORY M OVERHEAD

2.3.4.1 Problem Definition

The runtime support provided to Ada applications programs by
the Ada RTL includes a number of memory management functions.
The primary functions are m6mory allocation and deallocation
and heap storage management (garbage collection). These
functions are performed by the RTL either on an as needed basis
(memory allocation/deallocation during a context switch) or as
required by the application (use of access types to create
objects at runtime).

However, the RTL memory management features add a significant
amount of runtime overhead to the performance of an Ada
system. Since these functions are resident in the target
machine and operate in conjunction with the application
programs, they also require system resources (CPU,memory). The
utilization of system resources by the RTL must be addressed
when performing overall system sizing and timing analyses in
the applications environment. It is important to know whether
the overhead associated with the RTL memory management features
is large enough to affect the ability of the system to meet
specified requirements.

2.3.4.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution 1 Remove or modify the RTL memory management
software, if feasible. If the Ada application does not
require memory management, removal or modification of this
software could result in reduced storage and execution time
requirements. The removal of this code may be done by the
compiler vendor or possibly through the use of a pragma, if the
compiler supports it. It should be noted, however, that since
the RTS also makes use of the memory management software,
caution should be exercised in removing or modifying this
software.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

22

Solution 2 - Perform benchmarking and early prototyping to
provide performance information about the memory management
software to system developers. The performance of the
memory management software should be analyzed early in the
project life cycle, and this information should be made
available to the design team for use in determining sizing
and timin- requirements for-the application.

Solution Method - Technical
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution _I - Obtain memory management performance information
for use in compiler selection. The issue of memory management
overhead should be addressed during the compiler selection
process to ensure that the chosen compiler provides the
minimum amount of overhead to the Ada application.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

2.3.4.3 Actual Industxy Solutions

Solution 1 - Provide guidance for the use of Ada constructs
which adversely impact memory management overhead. One
interviewee stated that his project did not use Ada constructs
such as unconstrained arrays which can have a severe impact on
RAM and ROM storage requirements. He also addressed this
problem by initially allocating a specific amount of storage
for all tasks used (a feature of the compiler) and keeping
these tasks alive throughout the processing.

Solution Method - Methodology
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 2 - Perform your own memory management. One
interviewee stated that he had performed all dynamic allocation
functions at initialization time and after that, all allocation
is performed by the Ada application, not the runtime software.
However, this can result in an application that is less
maintainable and portable due to this user-written project-
specific software.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

23

2.3.5 InPACT OF RUNTIME SYSTEM OVERHEAD

2.3.5.1 Problem Definition

The Runtime Library (RTL) is the total package of software
required at runtime to support the execution of the object code
generated by the compiler for the application program.
Functions such as dynam c memory management, system
activation/allocation, interrupt processing, input/output
operations, co-processor support, and tasking are all performed
by the RTL. The basic problem with the RTLs of today is that
they are generally too large and too slow for many embedded
system applications. In terms of sizing, the problem is more
noticeable when the application program is fairly small. In
this case, it's very possible that the RTL can be larger than
the application program.

As the application programs grow larger, the proportion of
memory taken by the RTL become less, thus the impact is not as
great. For timing impacts, the amount of overhead
experienced will depend upon what features of the language are
used. Generally speaking, the more you use the unique features
(tasking, dynamic memory, delays, etc.) of Ada, the more over-
head that is incurred. This can be attributed in part
to the #mmaturity of existing RTLs. Because some of the Ada
features are new to the implementers of the language, the
techniques of implementing them efficiently are still emerging.

2.3.5.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution 1 - Modify RTL software to improve system performance.
This solution can include configuring the RTL to remove
unneeded code or modifying the existing RTL code to add
functionality or improve performance. Some compilers provide
pragmas that can be used to configure the RTL to reduce its
size and improve its performance. In certain cases, the
compiler vendor may be required to modify the RTL for
project-specific reasons.

If the source code is available, the Ada developer can use in-
house resources to modify the RTL. However, this solution
should be considered as a last resort. The complexity of the
RTL requires the developer to have an intimate knowledge of the
RTL to correctly implement the desired modifications without
affecting other areas of the RTL. Also, the project team would
then have to assume the responsibility for maintaining the
modified RTL.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

24

Solution 2 - Perform benchmarking and early prototyping to
provide functional and performance information to system
developers. The early availability of RTS performance
information is critical to the developers in
identifying potential sources of functional and performance
problems and devising solutions to these problems. It is
very important to perform this benchmarking and prototyping
using code that is very similar to that of the actual
application that is being developed.

Solution Method - Technical
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution .I - Obtain RTS functional and performance information
for use in compiler selection. The functional and performance
characteristics of the RTS should be considered heavily in
selecting a compiler for a real-time embedded application.
This can greatly reduce the adverse impact of the RTS on
system performance.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

2.3.5.3 Actual Industry Solutions

Solution I - Use the Ada compiler linking process to eliminate
unneeded code from the RTL. One interviewee stated that
initially, the applications developers were forced to name the
specific runtime routines to be used. Later, the compiler
vendor modified the compiler to only include those runtime
routines that are physically required by the applications
software.

Solution Method - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution 2 - Rewrite portions of the RTS to improve system
performance. One interviewee stated that he had rewritten
runtime routines that performed operations such as timer
control and interrupt vector processing. Rewriting these
routines improved overall system performance, but required the
developer to maintain the RTL from that point on. Another
interviewee stated that the RTL used on his project allowed the
developers to modify those routines that were designated as
"user-customizable".

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

25

2.3.6 IMPACT OF TASKING OVERHEAD

2.3.6.1 Problem Definition

One of the key features of the Ada language is tasking. Ada
tasks are *entities whose executions proceed in parallel. "This
feature gives Ada a great' advantage or other high-level
languages, but not without a price. The cost is in terms of
overhead. Tasking overhead affects the efficiency of the
system in both sizing and timing.

Whenever a designer decides to utilize tasking in an Ada
program, he will automatically incur an additional cost in
terms of additional runtime support code, which can be as high as
thirty kilobytes. This code is required to perform the
various features (entry calls, accepts, selects,..etc.) of Ada
tasking at runtime.

Another sizing problem has to do with the stack requirements of
tasks. The designer must allocate enough memory for his
application to make available the additional stack memory for
task control information. Also, any stack memory required for
any runtime procedures called to execute a particular feature
must be added to the total size of the task stack allocation.
The stack allocation requirements are required for each
task declared in the designer's application program. Thus, the
problem is compounded.

With the use of tasking, today's applications will experience
timing overhead impacts due to tasking features like task
allocation, task activation/termination, task switching,
synchronization and task rendezvous. To determine what kind of
overhead would be incurred by using tasking, a study was
performed by Hughes Aircraft Company. The study conducted a
series of tests using the DEC Ada Compiler (1.2) on a VAX 8600
(VMS 4.2). The following results show the magnitude of task
overhead compared to the processing done within the task
itself:

26

Task Normal
Description Overhead Proc.

(usec) (usec)

1. Task activation and termination 1960 178
2. Task created via an allocator 150 14
3. Producer-Consumer (2 task switches) 503 46
4. Producer-Buffer-Consumer 1220 111
5. Producer-Buffer-Transporter-Consumer 1694 154
6. Producer-Transpt-Buffer-Transp-Consumer 2248 204
7. Relay 906 82
8. Conditional Entry

- no rendezvous 170 15
- rendezvous 29 3

9. Timed Entry
- no rendezvous 254 23
- with rendezvous 33 3

10. Selective Wait with Terminate 127 12
11. Exception during a rendezvous 962 87

[Ref] T.M. Burger and K.W. Nielsen, "An Assessment of the
Overhead. Associated with Tasking Facilities and Task Paradigms
in ADA", Hughes Aircraft Company.

2.3.6.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution I - Remove tasking software if not necessary. If an
Ada application will not be using the Ada tasking feature, this
software can sometimes be removed from the runtime
environment via compiler modifications by the compiler vendor
or through the use of pragmas (if provided). This can be
a critical decision, because the runtime software which
supports tasking is, by far, the largest component of the
RTS and provides the most excessive processing overhead.

However, it should be noted that the the tasking software is
required for interrupt handling and delay statements as well as
for implementing user-defined tasks. Also, removing this code
usually requires extensive modifications to the RTL and can
place severe limitations on the types of applications that can
be run using the modified RTL.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

27

Solution 2 - Enhance tasking software to increase
performance. When feasible, the runtime software which
supports Ada tasking can be modified to improve its
performance in areas such as context switching and
rendezvous processing. An example of this is the "Fast
Tasking" feature that is now provided by some compiler
vendors; this feature minimizes (and in some cases,
eliminates) context switching during task activation and
deactivation. However, this solution should be carefully
evaluated to determine the impacts caused by the resulting loss
of functionality.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution - Perform benchmarking and early prototyping of
the Ada tasking feature to provide functional and
performance information to system developers. The
information obtained from these early efforts is critical
to the Ada designers in maximizing system performance.

Solution Method - Technical
Solution T.eframe - Short-term
Solution Approach - Preventive

Solution 4 - Obtain tasking performance information for use in
compiler selection. The performance and implementation of the
Ada tasking feature should be considered very strongly in the
selection of an Ada compiler; the use of tasking can have a
major impact on the performance of Ada applications.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution * - Provide guidelines for the use of tasking in
applications programs. Currently, one of the most common
solutions to the problem of tasking overhead is to minimize or
eliminate the use of tasking in Ada applications because the
tasking feature is the largest source of inefficiency for
most Ada programs. However, if guidelines are provided, the
powerful Ada tasking feature can be used more effectively
rather than eliminated.

Solution Method - Methodology
Solution Timeframe - Short-term
Solution Approach - Preventive

28

2.3.6.3 Actual Industry Solutions,

Solution 1 - Restrict use of Ada tasking features to reduce
runtime overhead and improve system performance. One
interviewee stated that they minimized the use of Ada
rendezvous because of the overhead associated with them.
Another interviewee stated that he improved performance by
minimizing the number of parameters that were passed during
task rendezvous. Another interviewee stated that he improved
performance by not performing any task creation or termination
during runtime.

Solution Method - Methodology
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution 2 - Modify the Ada runtime software to reduce the
overhead associated with Ada tasking functions. One
interviewee stated that he modified the runtime software by
replacing the task connection and context-switching performed
by interrupt handling tasks with an interrupt service routine
that was developed by the applications programmers.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

29

2.3.7 INEFFICIENCY OF OBJECT CODE GENERATED BY ADA COMPILERS

2.3.7.1 Problem Definition

As with most first generation compilers for new languages, the
Ada compilers -today are somewhat inefficient because of the
complexity of the Ada language. Unfortunately, the lack of
efficient compilers directly impacts the development of
embedded systems today. Embedded systems typically have very
restrictive requirements on sizing, timing and power
consumption. Therefore, any inefficiencies in the object code
generation will impact the cost and performance of the typical
weapon system. Because the compilers are producing more code
than required to implement a particular function the
compilation time is longer. As a result, it takes developers
somewhat longer to complete the coding process. This means
schedule and cost impacts.

2.3.7.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution 1 - Modify the Ada compiler to generate more
efficient object code for a particular application. For
example, the compiler can be modified to better utilize the
underlying system hardware architecture or to produce code that
utilizes the capabilities of special-purpose project-specific
hardware. These modifications should be performed by the
compiler vendor.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution 2 - Determine object code efficiency requirements for
use in compiler selection. The efficiency of the generated
object code should be weighed heavily in selecting an Ada
compiler for a real-time embedded application. The generation
of inefficient code can be a major contributor to poor system
performance for Ada applications. Determining the efficiency of
the object code for a particular application may involve the
use and evaluation of project-specific benchmarks for critical
portions of the project.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

30

Solution 3 - Perform required system performance optimization.
The inefficiency of the object code generated by the Ada
compiler can require that extensive optimization be performed
to ensure that the system meets specified performance
requirements. To perform this optimization, the developer must
have a good understanding of how the compiler works; sometimes
the developer can obtain support from the compiler vendor to
obtain this understanding.

Solution Method - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

2.3.7.3 Actual Industry Solutions

Solution 1 - Restrict the use of Ada constructs and features
which generate inefficient object code. One interviewee stated
that he used case statements instead of compound IF statements
to improve performance. Another interviewee stated that he
minimized the number of parameters that were passed in
procedure calls.

Another interviewee stated that he restricted the use of array
initialization at declaration time and achieved a significant
increase in performance. Another interviewee stated that he
restricted the use of runtime constraint checking; he felt that
a good optimizing compiler and careful programming can minimize
the need for this feature.

Solution Method - Methodology
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution j - Request that compiler vendor modify the compiler
to improve performance. One interviewee requested that the
compiler vendor use indirect addressing rather than computation
to compute array indexes. Another interviewee stated that
he asked the compiler vendor to make changes to the compiler
in areas such as the interface to assembly language
routines.

However, this solution can result in a compiler that is project
specific and must be maintained by the development team rather
than the compiler vendor.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

31

Solution - Evaluate generated Ada object code to determine
how much code is actually being generated and comparing this
with the expected amounts. One interviewee stated that he used
disassembled listings to determine how much code is actually
being generated. This helped his development team to pinpoint
those areas which were the least efficient. He also noted that
this is compiler-dependent and depends on the compiler
configuration.

Solution Method - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution 4 - Modify the RTL. One interviewee stated that he
had modified the Ada RTL to improve system performance and meet
specified functional requirements. These modifications
included patching the runtime software to reflect project-
specific hardware configurations and providing special-purpose
interrupt service routines.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

32

2.3.8 PEQUIRE ME.TS FOR EXTENSIVE ADA OTMZI1'TZION

2.3.8.1 Problem 'efinition

Due to the inefficiency of compiler-generated Ada P~plications
code and the excessive overhead associated with the RTL run-
time support, extensive optimization is generally required to
improve the performance of Ada systems.

The types of system optimization that are performed include:

* Customizing the RTL for a particular application

* Reducing RTL overhead (tasking, memory management,
interrupts)

* Adding special-purpose hardware and software

* Rewriting applications programs (algorithms)

* Modifying compiler implementation details

* Using non-Ada software

* Providing absolute addressing capability

* Providing for storage of constants in ROM

However, this extensive optimization can adversely affect
system performance and project productivity. The addition of
special-purpose hardware and software along with the use of
project-specific programs can reduce system portability,
reliability, maintainability, reusability, and verifiability,
and can increase system complexity. Also, the extensive rework
that is performed as part of the optimization efforts can
decrease overall project productivity.

2.3.8.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

33

Solution 1 - Perform benchmarking and early proot -in to
provide functional and performance information to system
developers. One of the main reasons for the extensive
optimization required for real-time embedded Ada applications
is the failure of developers to perform adequate benchmarking
and early prototyping of the Ada applications software and run
time environment. The -use of benchmarking and early
prototyping can greatly reduce the amount of rework required
during the software life cycle.

Solution Method - Technical
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 2 - The Ada compiler and RTL should be analyzed
and evaluated early in the development cycle to identify
potential areas for performance problems. The results of this
analysis can be used to address these problems early, thus
reducing the amount of optimization that must be done in the
later stages of the project.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 3 - Modify the Ada compiler and RTL to add
functionality and improve performance. More detailed
information concerning these modifications can be found in the
writeups for Problems 3 - 7 (Sections 2.3.3 - 2.3.7).

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

2.3.8.3 Actual Industry Solutions

Solution 1 - Use assembly language to improve performance. One
interviewee used assembly language to rewrite portions of the
application to provide increased performance. The portion of
the code that was rewritten included high-speed device drivers,
and critical portions of the application that had to reside in
a limited amount of ROM. The assembly language routine were
written a separate programs and interfaced to the Ada
application.

Another interviewee stated that he rewrote some of the memory
and time-critical portions of the application using the Ada"in-line" code feature to improve system performance.

Solution Method - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

34

Solution z - Modify the RTL to improve system performance. One
interviewee modified the RTL to perform more efficient task
context switching by reducing the number of system functions
that are performed during this process. In certain situations,
machine registers were not saved and data that was not critical
to the task being swapped out was also not saved.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution) - Perform algorithm modification. One interviewee
modified his algorithms to be more efficient in the Ada
environment by replacing unconstrained arrays with constrained
arrays. Another interviewee stated that he performed static
allocation whenever possible to allow for better compiler
optimization and also performed bit packing to save
storage space.

Solution Method - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

Solutidn 4 - Use Pragma "Optimize" to improve applications
performance. One interviewee stated that he used Pragma
"Optimize" with the time and space options to meet optimization
requirements for his application. The choice of time or space
optimization is dependent on the application.

Solution Method - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution - Modifying applications programs to reduce use of
inefficient Ada features. One interviewee suppressed the use
of constraint checking near the end of the development effort.
Another interviewee reduced the use of tasking in his
application to improve system performance.

Solution Method - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

35

.39 iAEQU.IL LET C.k1rj2- 'TM-ip POerCVDE% low ~I T
DEBUGGERS

2.3.9.1 Problem Definition

Poor debugging tools do not give the engineer adequate control
and visibility of the program at runtime. This will directly
affect the verifiability of the program and the system.

2.3.9.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution 1 - Supplement inadequate Ada debugging tools with
other debugging tools for target hardware. In some cases, when
the debugging tools provided in the Ada support environment are
inadequate, additional debugging capabilities can be obtained
through the use of off-the-shelf tools which are not
Ada-oriented but are designed for use in the target hardware
environment. These tools can include machine code debuggers
and in-circuit emulators and may require some manual support to
make them suitable for use in debugging an Ada application.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution 2 - Determine Ada debugging tool requirements for use
-in selecting an Ada Programming Support Environment (APSE).
The performance and features of the selected debugger are
very important to the success of an Ada project; thus,
an evaluation of the proposed debugger should be
strongly considered in the selection of an APSE. The debugger
should be Ada-oriented and should provide adequate Ada
traceback capability.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution I - Provide special-purpose hardware and software to
support debugging efforts. The Ada development team may have
to build application-specific Ada-oriented debugging tools
to supplement inadequacies in the debugger provided in the
APSE. These custom tools may include items such as a
system performance monitor or system status monitor.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

36

2.3.9.3 Actual Industry Solutions,

Solution 1 - Use an off-the-shelf debugger which is designed
for use with the target processor, even though it may not
provide direct traceability to the Ada source code. One
interviewee stated that he used an off-the-shelf debugger which
allowed debugging at the-assembly language level; he used
disassembled compiler listings to provide traceability to the
Ada source code. This approach requires that the developers
know a great deal about how the Ada code generator works.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution 2 - Request that the compiler vendor improve the
debugger to meet project requirements. One interviewee
requested that the compiler vendor provide tools to help the
developers find their way through the Ada code in areas such as
context switches.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution I - Modify applications code to improve capability to
perform debugging. One interviewee stated that he inserted
additiona breakpoints into the applications programs to assist
in debug1nng through task context switches. Another
interviewee stated that he embedded code within the
applications program to assist in debugging. This code
performed functions such as recording variable values,
recording which programs are executed, and providing sample
data to the application.

Solution Method - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution 4 - Perform an evaluation of required debugging
capabilities as part of the compiler selection process. One
interviewee stated that he attempted to perform this evaluation
based on the requirements of his application (real-time
processing, heavy use of tasking, lots of interrupts).
However, he was limited by the capabilities of the Ada compiler
that was provided as Government Furnished Equipment.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

37

2.3 -10 jEn EXP TI H 'LG

2.3•10.1 Problem Definition

The whole idea of handling unexpected errors at runtime is a
very good concept. But having developed and debugged some Ada
programs, one begins to sense there is a problem with the
handling of exceptions. The problem has to do with the manner
in which an exception is reported to the engineer and the lack
of information that is conveyed. This is particularly true when
the exception that is raised is a non-user-defined exception.
Further, if the application program does not require the
inclusion of TEXTIO, and many will not because of its large
size, or no capability to display text messages exists in the
runtime program, the problem can be compounded.

This is because it is now possible for an exception to be
raised and the engineer not know of its existence until it
manifests itself as a failed function much later. Now the
engineer must search for the source of the exception and then
determine why the exception was raised. Depending on the
debugging tools available to the engineer and how far the
manifestation of the problem is from the real problem, the
determination of the problem can be long, frustrating and costly.

2.3.10.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution 1 - Build Ada exception handlers which collect
information about exceptions. Currently, most Ada runtime
environments do not provide enough information about the system
state at the time an exception occurs to allow the developer to
easily determine the cause(s) of the error. To address this
problem, the developer can write Ada exception handling
routines which collect and save information such as the time
of the error, and the system state when the error occurred.

Solution Method - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

38

Solution _Z - If feasible, display error information when
the exception occurs. During the development phase of a
project, error information collected during exception
handling can be printed when the error occurs, if an output
device is available. This requires the inclusion of the
Text I/O package for displaying output. This solution may
not be feasible for embedded applications where system
output and or processing time are limited.

Solution Method - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

2.3.10.3 Actual Industry Solutions

Solution 1 - Minimize the use of exceptions. One interviewee
stated that he minimized the impact of Ada exception handling
by allowing only the use of basic Ada exceptions unless
absolutely necessary and by writing programs which performed a
minimal amount of exception processing.

Solution Method - Technical
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 2 - Adjust process priorities to facilitate display of
error messages during interrupt processing. One interviewee
stated that he had to ensure that the priority level of the I/0
driver was higher than the priority level of the interrupt
routine so that the error messages would print out when they
occur.

Solution Method - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

39

2 1 1 1%? 1
11 ,q

2.3.11.1 Problem Definition

The use of Ada generics is regarded as a major step towards the
development of reusable Ada programs. However, in the current
Ada environment, extensive use of Ada generics can adversely
impact the performance of Ada systems and the productivity of Ada
development efforts. The extensive use of generics can result in
a significant increase in system memory requirements. This is
due to the general inefficiency of code that must be shared by a
variety of programs, the additional code that is required to
implement conditional processing within the shared code, and the
additional processing required to implement the use of the actual
parameters within the generic instantiation.

There are also impacts on productivity. Each time a generic
program is changed, all programs which contain an instantiation
of the generic must be recompiled. Also, the generic
instantiations are essentially compiled as in-line code, which
increases overall compile time.

2.3.11.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution 1 - Provide guidance for the use of generics. The use
of generics can have unexpected impacts on project productivity
and system efficiency. Each time a generic program is
changed, all programs which contain an instantiation of the
generic must be recompiled. Compilation of generics as in-
line code can increase system compilation time. Also,
system memory requirements can be increased due to the
relative inefficiency of the shared code and conditional
processing that is common to generics.

However, the Ada generic is a powerful feature of the language
which can greatly improve productivity and increase the
reusability of the developed Ada software. Thus, providing
guidance and ensuring effective use of generics is preferable
to eliminating its use altogether.

Solution Method - Methodology
Solution Timeframe - Short-term
Solution Approach - Preventive

40

Solution 2 - Avoid the use of compilers that compile generics
as in-line code. For generics of substantial size that are
widely-used, this approach generally causes large
increases in system compilation time, thus reducing project
productivity.

However, it should also be noted that there could be situations
where the implementation of generics as separate copies could
be useful so that each copy can be optimized individually for
the conditions under which it was instantiated.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

2.3.11.3 Actual Industry Solutions

Solution . - Minimize the use of generics. One interviewee
stated that he had minimized the use of generics to improve
project productivity, which was reduced due to the extensive
requirements for code recompilation.

Solution Method - Methodology
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 2 - Evaluate the approach used by the compiler vendor
to implement generics. One interviewee stated that he chose a
compiler which implemented generics as shared code to eliminate
the potentially expensive code recompilation and storage
requirements that are associated with generics that are
compiled as "in-line" code.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

41

2.3.12.1 Problem Definition

One of the common requirements for the embedded system is the
requirement to perform Built.In Test (BIT). BIT is the ability
of the embedded system to perform a self-test without external
equipment and indicate if the system is good or bad. BIT is
usually performed by some combination of hardware and software.
One of the key functions in performing a self-test is the
setting of the system to a known state. A good example of this
would be the initialization of RAM (random access memory). When
an embedded system is first powered up, the state of RAM is
unknown.

Therefore, one of the functions of BIT is to set RAM to a known
state and then verify it. The problem occurs when the
application is implemented in the Ada language. The run-time
support code is designed to take control of the system at power-
up and perform system elaboration. When elaboration is
completed all task stacks and variables have been allocated.
But the state of memory (RAM) is still indeterminate. If BIT
were to run after elaboration it would destroy the state set up
by the RTL. Therefore, BIT must execute before the RTL. Today,
one must modify the runtime support code to perform this type of
function, and to do so can be very costly and time consuming
because you are modifying someone else's code.

2.3.12.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution 1 - Modify RTL to allow programs to run
independently. Certain Ada applications, such as those which
require built-in testing (BIT) before system start-up or require
programs to run concurrently with the Ada application but
outside of the RTS may require this capability. These
modifications should be made by the compiler vendor.

Independent BIT can be performed having the system start-up
vector transfer control to the BIT software before providing
control to the RTS. Some Ada compilers already provide the
capability to run pre-RTS programs; however, in most cases,
these programs cannot be written in Ada.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

42

2.3.12.3 Actual i-dstry Solutions

Solution 1 - Modify runtime software to allow applications
programs to perform independent of RSL. One interviewee stated
that he had patched the runtime environment's initialization
routine so that a user-supplied initialization routine would be
run before Ada runtime startup.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution 2 - Obtain an Ada compiler which allows the developer
to execute user-developed initialization routines before the
runtime software is executed. One interviewee stated that the
compiler developer provided a switch that allows the developer
to execute non-runtime software first. Another interviewee
stated that his compiler provides user configurable code and
allows the user to write his own system initialization and
bootstrap code.

Solution Method - Tools
Solution Timeframe - Short-term
S61ution Approach - Remedial

43

2.3.13 LACK OF A DISTRIBUTED R1T3ITIE LIBR-.RY (T._

2.3.13.1 Problem Definition

The term "concurrent processing" is often mentioned in the same
breath as Ada. This is because the Ada is designed with
concurrent processing as a goal. This goal is met by creation
of tasks. However, many of today's implementations of the Ada
Language Reference Manual (LRM) are not capable of true
parallel (concurrent) processing. This can be attributed to the
lack of RTLs that are designed to be distributed across
multiple processors. Another reason may be the LRM itself,
since it does not address the requirements for distributed Ada
processing.

Many of today's embedded system applications have requirements
that warrant the design of systems capable of true parallel
processing. Where parallel processing is required, the technique
that is often implemented is distributed processing. Distributed
processing occurs when computer pzmcesses are distributed
across multiple computer processing units (CPU) to achieve true
parallel processing. Today, an embedded system with multiple
processors, implemented in the Ada language, must develop Ada
programsfor each CPU in the system. Thus, the system incurs
the cost of additional memory, timing, and hardware to
accommodate an RTL for each processor.

2.3.13.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution 1 - Acquire an Ada RTS which can be distributed among
multiple processors. Current Ada RTSs do not support the
development of true distributed applications. To run an Ada
application on multiple processors, an independent version of
the RTS must reside on each processor and there is no facility
for communication between these separate versions of the RTS.

Solution Method - Tools
Solution Timeframe - Long-term
Solution Approach - Remedial

44

functions. The modifications include implementing interprocess
and interprocessor communication between the RTSs, to provide
the capability for tasks to execute on multiple processors,
rendezvous with tasks on other processors, and share data -on
other processors. These - modifications can be performed
by the compiler vendors or Ada developers. Currently, Ada
developers such as LabTek are attempting to implement these
systems.

Solution Method - Tools
Solution Timeframe - Long-term
Solution Approach - Remedial

Solution - Perform distributed processing via the
applications software. If an Ada application must
perform distributed processing, the developer is currently
required to implement the data interfaces between the
processors as part of the applications program. However, the
lack of a distributed RTS makes it rather difficult to
implement a process which runs on multiple processors.

Solution Method - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

2.3.13.3 Actual Industry Solutions

Solution .1 - Modify RTL to support distributed processing. One
interviewee stated that he wrote extensions to the RTL to
handle distributed processing operations. Among the functions
performed by these routines were the passing of data and
process information between processors.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution Z - Request that the compiler developers provide task
and process information so that a task on one processor can
rendezvous with a task on another processor. One interviewee
stated that this solution is not yet feasible for most compiler
vendors.

Solution Method - Tools
Solution Timeframe - Long-term
Solution Approach - Remedial

45

2.3.14 !NABILITY TO PERFORM SECURE An DROCESSING

2.3.14.1 Problem Definition

Due to the current unavailability of a secure Ada operating
system and the excessive overhead associated with the use of a
secure Ada kernel to restrict system memory accesses, it is
currently difficult to build a secure processing application in
Ada.

The Ada language allows the applications programmer to perform
runtime, and system level operations which increase the
difficulty involved in protecting classified programs and data
within the system. These operations include the creation,
access, and destruction of objects at runtime, the use of
address specifications to access particular memory locations;
and the writing and execution of in-line assembly language
programs.

Also, the RTL code is not only resident in the target
environment, but runs in conjunction with the applications
programs. Thus, to fully verify the security of an Ada
system, the RTL code must be evaluated and certified as part
of the system certification effort. This is difficult because
most Ada applications programmers have little knowledge
concerning the operation of the RTL.

2.3.14.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution 1 - Acquire the Ada Secure Operating System (ASOS)
when it is available. The ASOS is a version of the Ada
runtime environment that has been modified to provide data and
program security for Ada applications. ASOS is currently
under development and will probably be available for use
sometime in the near future.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution 2 - Use of special-purpose hardware/software to
implement security mechanisms. Currently, Ada applications
are forced to implement required security mechanisms through
the use of methods such as protected memory areas and limited
software kernels.

Solution Method - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

46

implementation of secure Ada implementations. Certain Ada
features such as access types and the runtime memory
management software (garbage collection, allocation and
deallocation) cause difficulties in verifying the security
of Ada software systems. The verification process can be
simplified by developing guidelines for the use of these
features.

Solution Method - Methodology
Solution Timeframe - Short-term
Solution Approach - Preventive

2.3.14.3 Actual Industry Solutions

Solution i - Reduce non-determinism of Ada applications with
regard to security by restricting use of certain Ada
features/constructs. One interviewee stated that he isolated
czitical information by locating program data in a protected
area of memory and not performing garbaae collection. He also
restricted the use of exceptions because they can interrupt
normal processing at any time (non-determinism).

Solution Method - Methodology
Solution Timeframe - Short-term
Solution Approach - Preventive

47

2.3. 15 !)_IVRSITyINILE'!AtO TV IVOCWS

2.3.15.1 Problem Definition

'The task of developing Ada software for computers integral to
weapon systems is a complex one, and would be impossible
without good support tools. The set of these tools to be used
with an Ada compiler is called an Ada Program Support
Environment (APSE), and the APSE has been the subject of much
study since the Ada language was specified.

One of the problems recognized very early by both the Army
Communications and Electronics Command (CECOM) and by the Air
Force was the need for standardized and portable APSEs. The
Air Force effort was lost in a funding problem soon after its
inception, and the CECOM effort, which resulted in the Ada
Language System (ALS), was terminated and made public domain. A
number of users tried the ALS and found tool performance below
the range of usability.

This left the situation where each compiler vendor has marketed
its own version of an APSE, with each requiring training both
for users and for the host computer support engineers. This, in
turn, has made it far more difficult to transition from one
compiler to another during a project, a necessity all too often
brought about by other Ada problems (Problem #17 for example].
The extent of this problem depends upon the complexity of the
APSE that you now have and the one you are considering
acquiring. If one of the APSEs is the ALS, the problem is very
severe.

Col. Wm. Whitaker (Ret), commenting on a WIS report at the
Washington Ada Symposium, stated that most programmers make do
with a very minimal support environment, and that many of the
exotic tools described in the literature either do not work or
are not widely used (or both). One study [Ref] defines the
minimal tool set needed as a screen editor and an interactive
debugger. You are indeed fortunate if your APSE contains a good
source-level interactive debugger [Problem #9], but many APSEs
contain tool sets which are quite complex, requiring training
for all project designers and host support people.

[Ref] S.J.Hanson and R.R.Rosinski,"Programmer Perceptions of
Productivity and Programming Tools", Communications of the ACX,
Feb 85

2.3.15.2 Theoretical Solutions

48

... ^VJ 4e!wn ^hc~aal soltin Ir Ub.d 4 _n

generic Ada problem:

Solution j - Select APSE's that are compatible with the Ada
applications. The wide range of available APSE implementations
and the potential impact of-using the different implementations
makes it very important and difficult to select an APSE which
meets the needs of the project. The difficulty of this
situation is further increased because the choice of an APSE is
usually driven by the choice of a compiler. The tools which
comprise the APSE should thoroughly be evaluated in selecting
software tools for the project.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 2 - Select alternate APSE's that have similar
implementations. If the APSE selected for a project is deemed
to be inadequate part way through the development cycle, a new
APSE must be chosen. The impact to the project of choosing a
new APSE can be minimized by selecting an alternate APSE
which resembles the original APSE as closely as possible.
The &reas of impact which can be minimized include
functionality, performance, learning curve, and ease of use.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

2.3.15.3 Actual Industry Solutions

Solution j - Try to standardize the Ada software development
environment as much as possible. One interviewee stated that he
is trying to use compilers and tool sets that are supported in
a variety of environments, thus allowing him to use a
consistent set of support tools over a number of projects.

Solution Method(s) - Tools
Solution Timeframe - Long-term
Solution Approach - Preventive

Solution _ - Improve the APSE evaluation and selection process.
One interviewee recommended that education and training be
provided to Ada developers in selecting APSEs for use on their
projects. This education and training could include
determination of criteria for use in the evaluation of APSEs
and providing information on the composition and capabilities
of existing APSEs.

Solution Method(s) - Tools
Solution Timeframe - Long-term
Solution Approach - Preventive

49

Solution I - Use tools that are external to the APSE. One
interviewee stated that he supported his Ada project by
performing some APSE functions using external tools such as
debuggers, documentation tools, and others.

Solution Method(s) - Tools
Solution Timeframe - -Short-term

Solution Approach - Remedial

50

2.3.16 POOR PERF RMANCE OF AL. TOOLS

2.3.16.1 Problem Definition

In recent years, a number of software support tools have been
developed for use on Ada development efforts. However, due to
the fact that most of these tools have been developed for
project-specific purposes or as a part of internal R&D efforts,
these tools have generally provided poor performance. Some of
the tools that have been developed include compilers, linkers,
importers, exporters, debuggers, editors, pretty printers, PDL
processors, library managers, and library software
(mathematical, etc.).

The poor performance of these Ada tools has had an adverse
impact in some areas of programmer productivity. The
programmers have had to expend significant effort to develop
workarounds in those (frequent) cases where the tools have not
performed as expected (advertised). The tools vendors have
provided poor documentation and inadequate tool support, and a
number of the tools have been delivered with bugs in them. This
situation should improve as the Ada software development
environment continues to mature and more tools users provide
feedback to the tool vendors concerning the performance of the
tools.

2.3.16.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution I - Perform careful evaluation and selection of Ada
tools (benchmarking, etc..). Due to the poor performance of
current Ada tools, it is crucial to perform a comprehensive
evaluation of the tools to be used. This evaluation should
include performance demonstrations and benchmarks which reflect
the actual processing to be performed on the project.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

51

solution Z - Establish relationships 'ith w. v*t
(support, modifications, etc..). To ensure that adequate
support is available when problems occur with Ada software
tools, the development organization should establish a working
relationship with the appropriate tool vendors. This
relationship could include support such as tool modifications
and consulting to provide information on tool characteristics
and performance.

Solution Method(s) - Management
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution I - Develop in-house tools as required to support the
development of Ada applications. These in-house tools will
generally be developed to perform project-specific functions
and can only be developed if project or corporate funds are
available to pat for them. Examples of these tools are
documentation and program control tools.

However, due to cost and schedule concerns associated with
development efforts, an attempt should be made to find an off-
the-shelf tool before committing to build one in-house.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution 4 - Obtain information from tool users concerning
actual tool performance. One of the best sources of
information concerning the performance and capabilities of Ada
tools are tool users. The results obtained from usage of a
tool on an actual project can be invaluable, particularly if
it is similar to the current project.

Solution Method(s) - Management
Solution Timeframe - Short-term
Solution Approach - Preventive

2.3.16.3 Actual Industry Solutions

Solution 1 - Add more computing resources. One interviewee
stated that his approach to recovering from the poor
performance of the Ada tools was to add additional processors
to his system configuration as required.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

52

2.3.17 DIFFICULTY IN BENCH-ARKING Ank.- SVv

2.3.17.1 Problem Definition

Benchmarks can be of two main types, those that are used to
time and size portions of application code (usually using
breadboard hardware) and those that are used to evaluate
compilers and other support tools. It is the benchmark
software for support tools that is addressed in this problem.

Ada is a very powerful, but also very new, programming language
for embedded, mission-critical software. Whenever an
application is being planned that is significantly different
from previous experience in the software organization
performing the task, benchmarking is normally relied upon to
scope out the job. Unfortunately, the very constructs that
make Ada a valuable embedded software language are hard to find
in widely available benchmarks.

The benchmark most often cited by compiler vendors seems to be
the Dhrystone, which has none of the new Ada constructs
(tasking, interrupt handling, direct addressing, etc.) which
make it superior to languages like Pascal for embedded systems.
In comparison to real application code, the Dhrystone benchmark
is too optimistic in both compilation speed (lines of code per
minute) and in object code size (bytes per line of source
code).

Errors could be a problem if they are not discovered until
application code begins to emerge somewhere around the end of
the Detail Design Phase. The project is supposed to be
ready to code very heavily at that point, yet will find
itself with undersized computer resources, both for the host
and the target, if the Dhrystone numbers had been believed.

One approach taken to deal with this problem was reported by M.
Kamrad of Honeywell at the Jan 87 SIGAda Conference. He
recommended postponing the decision of how many processors to
put in the system and what software functions run in each until
the coding has matured enough that its final size and timing
requirements are known. According to D. L. Doty [Ref], this can
be a long wait. He has observed size-estimate errors greater
than 100 percent at the RFP stage, 75 percent up to the
Preliminary Design Review, and 50 percent up to the Critical
Design Review.

But all this leaves the compiler vendor in a quandary if he is
trying to introduce a new compiler. Unless he can test it
against a real application in Ada which is already running
under another Ada compiler, it will be difficult to convince
potential customers that this new compiler can really handle an
embedded Ada application.

53

[Ref] D. L. Doty , P.J.Nelson, and , g Ste,-rt .='...-- C¢:z
Estimation Study: Guidelines for Improved Software Cost
Estimating" (Vol 2), Final Technical Report by Doty Associates,
Inc., for Rome Air Development Center (RADC-TR-77-220),Griffiss
Air Force Base, NY, Aug 77, 145pp as cited by: W. Myers,"A
Statistical Approach to Scheduling Software Development", IEEE
Computer, Dec 78

2.3.17.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution 1 - Perform early identification of candidate
functions for benchmarking. This early identification of these
functions can ensure that the benchmark results are available
to the design team quickly and also provides the project
management personnel with an up-front estimate of the effort
required to perform the benchmarking. The candidate
functions should include mission-critical functions,
uncertain or risky processing requirements, and
performance-critical system software.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 2 - Develop and perform relevant project-specific
benchmarks. It is very important to develop benchmarks which
are relevant to the project being developed. This can include
the, actual algorithms and processing scenarios that will be
used on the project as well as the Ada system software
(compiler, runtime environment, etc..). Benchmark data that
is provided by vendors must be thoroughly analyzed and
evaluated to determine its relevance to the current project.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution I - Obtain benchmark information from similar
projects. Benchmark data that is obtained from the actual
results of similar projects can be very useful in determining
project sizing and timing requirements. In some cases,
this data may have to be extrapolated to determine its
applicability to a specific project.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Preventive

54

2.3.17.3 Actual Industry SolutiOns

Solution 1 - Evaluate available benchmark information on Ada
tools. One interviewee stated that he analyzed benchmark
information from sources such as the compiler vendor and PIWG
to determine whether the selected compiler would meet
performance requirements.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 2 - Prototype critical applications on target
hardware/system. One interviewee stated that he built a
prototype on his target system and then performed benchmarks to
evaluate system performance. He stated that it was critical to
perform these benchmarks in their selected target environment
to provide real-world design information and feedback to the
Ada development team.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution - Use reusable proven system components. One
interviewee stated that he used reusable software components
and off-the-shelf hardware components whenever possible because
of the availability of benchmark and performance information.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution A - Obtain some information from ACEC tests. One
interviewee stated that when available, the ACEC tests will
provide information concerning the performance of an Ada
compiler in certain scenarios.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 5 - Write benchmark software to support system
performance analysis. One interviewee stated that he wrote
special-purpose performance monitoring and analysis software to
assist in the system benchmarking process.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Preventive

55

2.3.18 LACK OF ADA SOFTWARE DEVELOPMENT TOOLS

2.3.18.1 Problem Definition

Although a number of software tools have been developed for use
in Ada environments, there is still a variety of tools that are
desirable to further improvb the productivity and performance
associated with Ada development efforts. Some of these tools
are currently in various stages of development (planning,
design. implementation, testing). Some of the tools that would
be useful for Ada efforts include:

* Ada Design Generators

" Ada Code Generators

" Ada Source Code Analyzers

" Ada-Oriented Debuggers

" Ada Syntax-Directed Editors

" Ada Cost Estimation Models

& Ada Project Management Tools

* Secure Ada Operating Systems

* Automated Ada Test Tools

The lack of Ada tools affects the overall productivity of
development efforts. The availability of these tools would
decreases the number of development activities that are
currently performed manually. It would also reduce the overall
development effort by reducing the requirement for applications
programmers to develop their own project-specific tools. The
availability would also improve the consistency of the products
developed on Ada projects and would help impose and enforce
project methodologies and development standards.

2.3.18.2 Theoretical Solutions

56

The following theoretical solutions are proposed for the
generic Ada problem:

Solution .1 - Obtain information concerning Ada tools which
exist or are being developed. It is very important to be well-
informed concerning the capabilities of existing Ada tools and
those which are currently under development - "Know what is out
there". This information is critical in the selection of Ada
tools for a project.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 2 - Modify/enhance existing Ada tools when feasible.
In some cases, the modification or enhancement of an existing
Ada tool may provide a faster or cheaper solution to a problem
than the purchase or development of a new tool. These
decisions should be made as early as possible in the project to
ensure that the tools are available when needed.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution . - Build new Ada tools when necessary. An
application-specific need can sometimes require that a software
tool be developed in-house for use on a project. But, due to
the risk involved in the development of new tools, and
particularly in the still immature Ada environment, these tools
should be acquired off-the-shelf, if at all possible.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution 1 - Supplement available Ada tools with non-Ada tools
for host and target hardware. The use of non-Ada tools to
perform some of the development activities on an Ada project
can help to compensate for the lack of available Ada tools.
Guidance should be provided to instruct the project personnel
in the proper application of these tools to an Ada development
effort.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

57

2.3.18.3 Actual Industry Solutions

golution .1 - Develop tools as required. One interviewee
stated that he had developed tools to automate critical
project functions, such as testing and software documentation.

Solution Method(s) - Tools
Solution Timeframe - 'Short-term
Solution Approach - Remedial

Solution 2 - (Re)Use existing Ada tools when possible. One
interviewee recommended that public-domain toolsets such as
STARS be used once the tool quality improves and the
accessibility to the tools is improved. Another interviewee
stated that he had found an Ada vendor that supplied a wealth
of support software tools and provided a very powerful
development environment. To accommodate these tools, he used
this tool set for development, even the eventual target
compiler and processor were different from the ones used in the
development environment.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

58

2.3.19 ADA LANGUAGE COMPLEXITY

2.3.19.1 Problem Definition

The complexity of the Ada language makes it difficult to learn,
use effectively, and test (validate). The Ada language
requires extensive training for programmers to learn language
syntax, proposed development methodologies, software
engineering standards, and implementation issues for real-time
embedded systems.

The Ada language is also difficult to use effectively and
efficiently. For example, the current inefficiency of Ada
compilers creates an environment where unchecked use of certain
Ada features (tasking, generics, etc..) can cause significant
impacts on system performance. Also, Ada development
methodologies and programming standards/conventions are still
being established.

The power and complexity of the Ada programming language can
also make it difficult to test and validate an Ada system. The
functional and performance impacts of the RTL, a very complex
piece of software, play an important part in the testing
process.

2.3.19.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution 1 - Establish guidelines for use of the Ada language.
The complexity of the Ada language and runtime environment
requires that comprehensive guidelines be established for the
effective use of Ada in a real-time embedded application.
These guidelines can include Ada-oriented design, coding,
and documentation standards as well as restrictions on the
usage of certain Ada constructs.

Solution Method(s) - Methodology
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution Z - Perform extensive Ada training. The availability
of comprehensive training support is critical to ensure that
project personnel are properly trained in the effective use of
the Ada language. The complexity of the language requires
that training be provided in areas such as Ada programming, Ada
real-time issues, the Ada runtime environment, and Ada
"lessons learned".

Solution Method(s) - Management
Solution Timeframe - Long-term
Solution Approach - Preventive

59

Solution * - Obtain information concerning past Ada
implementation efforts. Information obtained from other Ada
developers can reduce the complexity of an Ada development
effort by providing insight into the features of the language
and the problems which can occur when developing Ada
applications.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Preventive

2.3.19.3 Actual Industry Solutions

Solution 1 -Hire an experienced Ada staff. One interviewee
stated that he had hired project personnel that had prior Ada
and software development experience; they were better able to
deal with the complexity of the Ada language. However, due to
the current shortage of experienced Ada programmers, this
solution is not always possible.

Solution Method(s) - Management
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 2 - Create team of "Ada expertq". One interviewee
stated that he designated certain persounel as "Ada gurus";
they were responsible for resolving complex Ada issues. He
attempted to maintain an acceptable ratio of gurus to
developers. Another interviewee stated that he had created an
"elite corps" of Ada software engineers to handle complex Ada
issues; these engineers were separate from the software
technicians (programmers) who implemented the Ada design.

Solution Method(s) - Management
Solution Timeframe - Short-term
Solution Approach - Preventive

60

2.3.20 CUSTOMIZATION OF RUN-TIMELIBRARY

2.3.20.1 Problem Definition

When an Ada compiler and its -respective runtime support code is
validated, it is on a target system specified by the
compiler developer. The problem is that an applications user of
the compiler will usually have a different configuration
(memory map, I/0 map) for their particular system. Also, the
user may desire different default values for their runtime
application, such as the task stacks.

Therefore, the applications user must modify or customize the
runtime support code. To get this type of customization the user
will need to recompile the runtime support library. If the user
desires to perform this task himself, he must usually purchase
the source code rights for the RTL and train some people on how
to perform the required task. The other option is to contract
the vendor to make the required modifications. Either course
of action will add more cost to the development of the
application program.

Users have discovered on some Ada projects that the ALS runtime
software needed to be reconfigured for memory map
allocation, interrupt vector addresses, and Input/Output
addresses for Intel's PIC and PIT chips. Further, RTL code had
to be repackaged to allow for better selective linking and
modified to remove unused 8087 code and to reduce interrupt
overhead.

2.3.20.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution 1 - Modify the RTL to meet project-specific
and/or machine-dependent requirements. For some Ada
applications, the performance requirements are so severe or
specialized that it is necessary to modify or customize
the RTL in order to meet these requirements. An example
of this would be the use of a tasking implementation which
performs a limited context switch. This customization can be
performed by the compiler vendor or the developer (if the
source code is available).

61

It should be noted that due to the complexity of the RTL,
modification of this code should be performed as a last resort.
Also, once this code has been modified in-house, it is the
responsibility of the in-house personnel to maintain it from
then on.

Solution Method(s) - Tools
Solution Timeframe - -Short-term
Solution Approach - Remedial

2.3.20.3 Actual Industry Solutions

Solution 1 - Modify RTL to meet project functional and
performance requirements. One interviewee stated that he
modified the RTL in areas such interrupt handling and
conf3.guration for target processor. Another interviewee stated
that he had modified the RTL in areas such as task context
switching, power-up initialization, and configuration for
target processor.

A number of interviewees stated that they had performed their
own removal of unnecessary routines from the runtime software
environment. These interviewees also stated that they had
requested that the compiler vendor provide a manual or
automated capability to remove unnecessary software from the
runtime environment.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution 2 - Request that compiler vendor modify runtime
software. One interviewee stated that he had requested that
the compiler vendor modify the runtime software in areas such
as interfacing to assembly language routines, task context
switching, and power-up initialization.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

62

2.3.21 LACK OF EXPERIENCED ADA POGRANMERS

2.3.21.1 Problem Definition

As we in the Ada community-have heard so often, Ada is "not
just another high order language", but is a whole new approach
to software design. Indeed, many respected individuals feel
that the major contribution that Ada will make is to train
programmers in the use of modern software design techniques
[Ref]. When we speak of tte problem of not enough experienced Ada
programmers, it is in this broader context that we see the
problem.

Recent experience shows that a fresh graduate with a CS degree
can learn Ada syntax well enough in about three weeks to start
making useful contributions to a project. Despite the
complaints about Ada being "too complex", it turns out in
practice that some of the complex features need only be used by a
small percentage of design team members.

Teaching a methodology takes far longer. Formal courses
typically go for two or three weeks at two or three hours per
day (with homework), but it takes actual project experience
before most people really understand the value of a methodology
and become advocates of it. Without this kind of full support,
most methodologies are reduced to being an extra paperwork
burden in the minds of the programmers.

Formal courses are another problem because hiring is usually
done over a period of time, rather than hiring the first few
applicants who meet the minimum qualifications. Putting
untrained people on the job while they are waiting for the next
class to start brings on the infamous Brooks' Law effects,
where the addition of additional programmers slows down the
team [Ref]. This happens because the experienced people must
spend considerable time explaining to the new people some of
the things they would normally have learned in the classes.

Finally, the supply of experienced Ada programmers is not easy
to measure. At the November 86 SIGAda Conference, for example,
it was reported that the biggest shortage in Ada-trained people
is among managers. The supply of programmers was greater than
the number of people actually doing Ada work. However, this
result flies in the face of some recent experience in hiring,
where a large number designers have been hired to do Ada work
and few of them had any Ada experience on the job.

This apparent discrepancy between the reported oversupply and
the experienced shortage of Ada programmers could have been a
local shortage or it could have been pure chance. But it also
could have been caused by large firms training massive numbers

63

of people in Ada in anticipation of future Ada contracts. This
would indeed cause an oversupply to be measured if one counted
everyone who went through these courses as an experienced Ada
programmer.

[Ref] F.P.Brooks,"No Silver Bullet", IEEE Computer, April 87

[Ref] F.P.Brooks,"The Mythical Man-Month", 1975, Addison-
Wesley, Reading, Mass.

2.3.21.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution .1 - Provide comprehensive training for project
personnel. The current lack of experienced Ada software
engineers and managers makes it critical that comprehensive
training be provided to project personnel. This training helps
to ensure that the Ada developers use the language effectively.
It is important to note that this training should be provided
to the software engineers, managers, and, if required, to the
customer/client.

Solution Method(s) - Management
Solution Timeframe - Long-term
Solution Approach - Preventive

Solution 2 - Provide comprehensive standards and guidelines for
Ada software developers. The establishment of Ada standards
and guidelines provides the Ada developers with information
concerning the effective use of the Ada language and also
provides guidance concerning the restrictions on the use of
certain Ada constructs for an application.

Solution Method(s) - Methodology
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution I - Establish team of Ada software "gurus" to support
Ada development efforts. Due to the shortage of experienced Ada
software engineers, the "gurus" are needed to provide design
and implementation information to the project personnel. The
establishment of this team can greatly improve project
productivity by improving the effectiveness of the development
team and minimizing the amount of rework performed on the
project.

Solution Method(s) - Management
Solution Timeframe - Short-term
Solution Approach - Preventive

64

Solution 4 - Automate the development environment as much as
possible. The use of automated tools to perform many of the
Ada development activities lessens the impact of the
inexperienced Ada software engineers, while also serving to
implement and enforce the standards established for the
project.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution i - Provide external consulting support, if required,
for development staff. The use of an external consulting
source to provide general and project-specific Ada information
to the developers can be very beneficial to the project. This
solution reduces the learning curve by providing Ada experience
and expertise very early in the project when a number of
critical development decisions must be made.

Solution Method(s) - Management
Solution Timeframe - Short-term
Solution Approach - Preventive

2.3.21.3 Actual Industry Solutions

Solution 1 - Hire experienced Ada programmers. One interviewee
stated that he had minimized this problem by hiring experienced
Ada programmers. He acknowledged, however, that in many cases
this is not a feasible solution due to the shortage of these
programmers.

Solution Method(s) - Management
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution _ - Hire experienced software engineers and train them
in Ada. One interviewee stated that he had hired soft-ware
engineers with good software development backgrounds and
provided them with a combination of formal and on-the-job
training.

Solution Method(s) - Management
Solution Timeframe - Short-term
Solution Approach - Preventive

65

Solution - Hire engineers with little Ada experience a.d
provide them with comprehensive Ada training. One interviewee
stated that he had used this approach because he was only able
to find inexperienced Ada programmers and because he felt more
comfortable with them once they had been through a formalized
Ada training sequence.

Solution Method(s) - Management
Solution Timeframe - Long-term
Solution Approach - Preventive

66

2.3.22 EXTENSIVE ADA TRAINING REQUIREMENTS

2.3.22.1 Problem Definition

The complexity of the Ada programming language and the system
development and runtime environments results in extensive
training requirements for Ada applications programmers.

To fully prepare the applications to develop Ada software a
variety of training should be provided at different levels
throughout the various phases of the project. Training should
be provided at a minimum at the following levels - Senior
Technical Staff, Junior Technical Staff, and Management.

The training courses to be offered should be selected according
to the type and level of personnel being trained. The
technical staff members should be offered all or some of the
following courses:

* Ada Language Overview

* Advanced Ada Language Issues

* Ada Development Methodologies

* Ada Implementation Issues

* Ada APSE Issues

The management staff should be offered the following courses:

* Ada Language Overview

* Ada Cost/Schedule Estimation and Tracking

* Ada Development Environment

* Ada Productivity Issues

Ada training costs are high and a large amount of time is
required to train the programmers. From 3 - 12 weeks should be
allotted for the technical staff and from 1-3 weeks for the
management staff. The training courses should be scheduled to
coincide with the proposed project staffing plan. It should be
noted that it is more difficult to retrain non-Ada programmers
than to train new programmers.

2.3.22.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

67

1 - Lock for experienced softwar-e engineers. Tha
availability of experienced Ada software engineers can reduce
the extensive Ada training requirements for the project. Not
only do these engineers require less training, but they can
also provide training to less experienced personnel.

Solution Method(s) - -Management
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 2 - Customize Ada training needs for a specific
project. Ada training needs should be determined early in
the project, based on factors such as the type and complexity
of the application, the experience and expertise of the
project personnel, the status of the project, and the project
training budget. Once the training needs have been
determined, the project personnel can be provided with the
training that is required for the particular project.

Solution Method(s) - Management
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 3 - Provide internal training support ("train the
trainers"). To reduce the training time and cost for Ada
development efforts, one approach that can be used is to send
the most experienced personnel to the training courses and then
let them train the remaining project engineers.

Solution Method(s) - Management
Solution Timeframe - Long-term
Solution Approach - Preventive

Solution 4 - Use automated tools to support training efforts.
The use of automated self-paced training courses, as well as
the availability of Ada software tools for hands-on training
and practice, can reduce Ada training requirements.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

2.3.22.3 Actual Industry Solutions

Solution 1 - Train a team of Ada *gurus". One interviewee
stated that he had trained a team of Ada "gurus" and had then
used them to train other members of the development team.

Solution Method(s) - Management
Solution Timeframe - Long-term
Solution Approach - Preventive

68

Solution _ - Provide on-going t;raining. One interviewee stated

that he had used a combination of on-the-job training and

limited instruction to train his Ada programmers. This

instruction included method training.

Solution Method(s) - Management
Solution Timeframe - Short-term
Solution Approach - Preventive

69

2.3.23 INACCURACY OF COST/SCHEDULE ESTIMATES FOR ADA Pu(VaMiAV

2.3.23.1 Problem Definition

Most of the Ada problems recounted here cause cost/schedule
perturbations for embedded mission-critical applications
[Problems #1,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,
23,24,25,26].

Because of the pervasiveness of the influence of almost every
problem on cost and schedule performance, the task of
estimating cost and schedule performance becomes even more
complicated. Not only must you understand enough about
software cost/schedule estimating, but you must also understand
enough about the additional problems you get in Ada. This Ada
problem knowledge is a very rare commodity today, which is one
of the reasons this report is being written.

In an effort to help, there have been extensions to one of the
most popular cost models, COCOMO [Ref], that attempt to
account for some of the better-known Ada problems [Ref].
These include the instability of the compiler (major revisions
every six months being the present norm) and the extra time it
takes totrain Ada programmers.

Even someone who has lived through the Ada problems might be
hard-pressed to estimate their cost/schedule effects on a new
project. The only real way to do this is to have someone in
control of the project who understands the pitfalls well enough
to avoid them, making their cost/schedule effects near zero
(since avoidance costs are usually small).

But not all Ada-specific cost/schedule factors can be called
problems. After all, the ultimate reason to use Ada is to save
money, not to lose it. When a steady-state condition is
reached after a few years of using Ada, developers should find
the costs much improved. But again, since very few have reached
this state, the actual gains are very difficult to estimate.

But even when all Ada-specific cost/schedule influences can be
accounted for, which may be years in the future for many
applications developers, the job of software cost/schedule
estimating is anything but easy. This is a long-standing
software engineering problem, with even estimation models with
many years of good service being criticized for making errors
of 100 percent or more [Ref].

In fact, some recommend collecting your own statistics for
several project done using your own programming support
environment rather than using the factors in the models [Ref].
Published model factors are based on data from hundreds
of projects, but if your environment is significantly
different than the industry norm then your responsiveness to
these factors may indeed be unique.

70

(Ref] B.Boehm, "Software Engineering Economics", Prentice-Hall,
Englewood Cliffs, NJ, 1981

[Ref] R.W. Jensen, "Projected Productivity Impact of Near-Term
Ada Use in Software System Development, "Hughes Aircraft Co.,
Fullerton, CA 1985

[Ref] C.Kemerer,"An Empirical Validation of Software Cost
Estimating Models", Communications of the ACM, May 1987

[Ref] H.Davis, "Measuring the Programmer's Productivity",
Engineering Manager, February 85

2.3.23.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution 1 - Use Ada-oriented software cost estimation tools.
To ensure a more accurate estimation of Ada software
development cost and schedule, a small number of Ada-oriented
software cost estimation models are available (Ex: Revised
COCOMO, Revised PRICE-S). These models have been revised to
reflect the historical information that has been obtained from
recent Ada projects, and should provide more accurate
estimates than the older models.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 2 - Obtain historical data concerning estimated vs.
actual cost/schedule performance on Ada projects. One way to
improve the accuracy of cost/schedule estimates for Ada
projects is to access the data base of recent Ada projects to
obtain cost estimation information for similar projects.
However, the information contained in this data base is very
limited, dua to the small number of Ada projects that have been
completed.

Solution Method(s) - Management
Solution Timeframe - Long-term
Solution Approach - Preventive

71

Solution 3 - Use non-Ada-oriented software cost estimation
models and extrapolate for use on Ada projects. If the Ada
development team does not have access to an Ada-oriented
software cost estimation model, it may be feasible to
extrapolate from a non-Ada-oriented model if there is a
sufficient base of experience or historical data to ensure that
the extrapolation is realistic.

Solution Method(s) - Management
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 4 - Obtain personnel with experience in performing
cost/schedule estimation for Ada projects. However, the
availability of personnel with experience in performing
software cost estimation for Ada projects is currently very
limited.

Solution Method(s) - Management
Solution Timeframe - Long-term
Solution Approach - Preventive

Solution 5 - Maintain historical data concerning estimated
vs. actual cost/schedule performance on Ada projects. Current
Ada developers should maintain information concerning
their performance on Ada efforts so that this data can be
used to improve the accuracy of the Ada software cost
estimation process.

Solution Method(s) - Management
Solution Timeframe - Long-term
Solution Approach - Preventive

2.3.23.3 Actual Industry Solutions

Solution 1 - Use cost estimation tools that have been updated
for use on Ada projects. A number of interviewees stated that
they have used or plan to use updated cost estimation tools
such as the Revised COCOMO.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 2 - Hire experienced Ada software personnel. One
interviewee stated that he had hired Ada software engineers
with software cost estimation experience on Ada projects and
that they had performed cost estimation for the project.

Solution Method(s) - Management
Solution Timeframe - Short-term
Solution Approach - Preventive

72

Solution 3 - Attempt to use flexible contracting methods. One
interviewee stated that due to the uncertainty of current Ada
cost estimation techniques, he had performed his Ada efforts
under a Cost-Plus contracting approach. Another interviewee
stated that he performed his Ada efforts under a Time and
Materials contract.

Solution Method(s) - Management
Solution Timeframe - Short-term
Solution Approach - Preventive

73

2.3.24 LACK OF ESTABLISHED ADA SOFTWARE DEVELOPNENT METHOD

2.3.24.1 Problem Definition

One of the most important features of Ada is that it encourages
the use of modern software engineering development practices
[Problem #21]. These practices can best be exploited when they
are packaged within a good development methodology. The lack of
an established Ada development methodology can be a problem in
that engineers trained in one methodology are less mobile if
other organizations (even withn the same parent organization)
use a different one. This in turn contributes to the lack of
experienced Ada programmers [Problem #21] since an important
part of their experience is their methodology training.

This is not to say that there is a lack of good Ada
methodol'gies. In fact there are two very good ones, Object
Oriented Design (OOD) and PAMELA (TM George Cherry). One of
these, OOD, is gaining both popularity and respect very
rapidly, and PAMELA, while held back now by limitations
described below, has good long-term potential also.

OOD is predicated upon the premise that problem definition is
the first and hardest task a designer confronts. OOD
concentrates on helping the designer with this task by
stripping away much of the syntactic material that adds little
to this task. It does this by defining the Object as an Ada
package or task, which is a higher level view than the module
of Yourdon (Ref]. This has led some to proclaim OOD as being the
most promising of the "technical fads" now available to
improve programmer productivity [Ref]. But it also causes
some to complain that OOD is too limited when it comes to
expressing the dynamism of Ada systems in operation [Ref].

PAMELA, on the other hand, is best at describing the dynamism
of Ada systems. It is the first process-flow methodology
specifically adapted to the Ada syntax [Ref 1], using easy to
learn graphical techniques to input the design information that
it will use to generate code automatically. This labor-saving
step is also its biggest problem right now, however, since it
generates an Ada task for every "single-thread" (no children)
process [Ref]. With current Ada compilers the overhead due to
context switching is too high to allow free use of tasking.

However, some vendors that have developed Ada applications using
PAMELA have been forced to redesign extensively to cut down the
number of tasks in the system because it could not meet the
design constraints. This is the other objection to PAMELA: it
leads to deeply-nested structures (Ref].

Note that neither of the two limitations to the use of PAMELA
are necessarily long-lasting ones. When Ada compilers become
available that can do very rapid context switches (perhaps in
conjunction with underlying microprocessors that have richer

74

instruction sets) and that maintain a singlet * r stack for the
parent task and all direct descendants (to avoid context
switches among them), PAMELA may become much more widely used.

As a final note, there are some software organizations that
service customers outside the Department of Defense and thus
may need to use languages other than Ada on some projects.
happened to be OC." Since one of the main goals of a
functional software organization is the balancing of labor
resources between on-going and planned projects, the use of a
non-language-specific methodology may be preferred. This allows
programmers to be moved between major projects to satisfy
special project needs or to further individual career goals.

[Ref] S.Boyd,*Ada Methods: Object-Oriented Design & PAMELA",
SIGAda, Nov 86

[Ref] F.P.Brooks,"No Silver Bullet", IEEE Computer, Apr 87

2.3.24.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution 1 - Select an Ada-oriented method for use as a
standard. The selection of a method should be based the type
of applications that are to be developed, and the method
features that are desired ([Soni8S]).

Solution Method(s) - Methodology
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 2 - Provide comprehensive guidelines for use of
the selected method. To ensure effective use of the
method, the Ada software engineers must be provided
with comprehensive guidelines and standards for its use.

Solution Method(s) - Methodology
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution I - Acquire automated tools to support and implement
the selected method. The acquisition of automated tools
improves project productivity by eliminating a number
of manual development activities and also implements and
enforces the established software development method standards
and guidelines.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

75

Solution 4 - Provide comprehensive training in use of the
selected method to ensure that the Ada development team
understands how to use the method effectively. Proper method
training is one of the most critical factors in the success
of a project.

Solution Method(s) - -Management

Solution Timeframe - Long-term
Solution Approach - Preventive

2.3.24.3 Actual Industry Solutions

Solution 1 - Develop your own Ada-oriented method. One interviewee
stated that he had developed his own method for use on Ada
projects. This method was designed for use in real-time
environments and was based on his experience on previous
projects. This method is obviously not feasible in most cases
due to the amount of software development experience that it
requires to do it right.

Solution Method(s) - Methodology
Solution Timeframe - Long-term
Solution Approach - Preventive

Solution 2 - Modify an existing method for use on Ada project.
One interviewee stated that he had modified an existing method
for use in the development of real-time Ada applications. This
modification had included the addition of Ada symbols and
constructs, the use of Ada PDL, and the modification of
documentation standards to reflect Ada issues.

Solution Method(s) - Methodology
Solution Timeframe - Short-term
Solution Approach - Preventive

76

2.3.25 LACK OF ESTABLISHED ADA STANDARDS AND GUIDELINES

2.3.25.1 Problem Definition

A growing number of software development organizations are
measuring the productivity of each designer and manager,
rewarding them primarily on this measured productivity and
the quality of their software products. This has been proven
over and over to be a sound practice since we have observed
that the difference in productivity between the best and the
worst programmers to be consistently about a factor of ten.
Besides keeping turnover of the best people very low, this
policy also strongly encourages the worst to either quickly
improve or to find another line of work.

The reason all organizations don't use this practice is that it
takes a considerable amount of effort to make it work right.
The measurands we use are, by now, quite standard (operational
lines of code and hours charged to the project), with good
tools available to automate their collection. The hardest part
is to establish standards that can be anchored in some facts,
such as the ubiquitous "national average productivity", or a
baseline, formed from several similar projects done in our
environment [Ref].

Here is the problem that Ada introduces. Because of the
difficulties in estimating the number of lines of code or labor
hours that a project should take [Problem #23], the credibility
of the standard is jeopardized. As long as the standards were
based on measured accomplishments of others, they were accepted
as a challenge. But if they must be based on theory because
Ada has a dearth of real data, their motivational value is
greatly reduced.

Compounding the problem is the observation [Problem #23] that
the productivity of Ada programmers is likely to start out
worse than with other languages, then rapidly improve, ending
up with higher productivity than other common languages. This
makes productivity data collection far more difficult, since it
is continually changing over a period of two or three years. It
also makes the data from other organizations more suspect since
it is hard to tell exactly where on the learning curve they
might be operating.

(Ref] H.Davis,"Measuring the Programmer's Productivity*,
Engineering Manager, February 85

2.3.25.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

77

Solution 1 - Develop a set of Ada standards and Tuidelines and
apply them consistently on Ada projects. The establishment of
a comprehensive set of Ada software engineering standards is a
means to ensure that project personnel use the Ada language
effectively and that Ada constructs which are undesirable for a
particular application are identified. The standards to be
established can include design, coding, and documentation
standards.

The development team should also evaluate the suitability of
the standards for use on their project(s) and provide feedback
to those responsible for implementing and enforcing the
standards.

Solution Method(s) - Methodology
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 2 - Obtain information on standards and guidelines
currently being used on Ada projects and use these, if
possible. Existing Ada software engineering standards can
provide a useful starting point for the development of project-
specific standards and guidelines. It is also useful to obtain
information concerning the experiences of the Ada software
engineers when the standards were used on an actual project.

Solution Method(s) - Methodology
Solution Timeframe - Long-term
Solution Approach - Preventive

Solution . - Acquire automated tools to implement and enforce
use of standards and guidelines. The use of automated tools
will help ensure that the established standards are applied
thoroughly and consistently across the project.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

2.3.25.3 Actual Industry Solutions

Solution 1 - Develop your own Ada standards and guidelines.
One interviewee stated that that he had developed his own set
of Ada software engineering standards and guidelines and
provided them to the development team at the beginning of the
project.

Solution Method(s) - Methodology
Solution Timeframe - Long-term
Solution Approach - Preventive

78

Solution 2 - Use existing Ada ,software engineering standards.
One interviewee stated that he had used available Ada software
engineering standards and modified them for use on his
particular project.

Solution Method(s) - -Methodology
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution .a - Provide guidelines for use of 2167A. One
interviewee stated that they provided guidelines for their
development staff in the use of DOD-STD-2167A to reduce the
inconsistency of documentation developed on the project.

Solution Method(s) - Methodology
Solution Timeframe - Short-term
Solution Approach - Preventive

79

2.3.26 PRODUCTIVITY IMWPATS OF AM

2.3.26.1 Problem Definition

Of the preceding 25 problems, 18 have been shown to influence
the cost of an embedded Ada system. On the other hand it is
often true that problem identification is the hardest part:
once you know what the problem is, the solution is sometimes
obvious. This report is therefore not as discouraging as it may
seem at first reading.

In the case of Ada, there are some long-term cost benefits that
are the ultimate reason it has been adopted as the standard
language for Department of Defense embedded mission-critical
software [Ref]. And other languages are not problem-free:
EGEN Smith reported that 70 to 80 percent of the late Air Force
projects are having software problems [Ref]. At the same
conference KGEN Salisbury reported another need for a standard
language like Ada that can handle a wide variety of
applications: The Standard Army Management Information System
(STAMIS) had grown to 750 systems, now reduced to 110. Using
Ada is expected to cut it to 37 programs.

The one area which is probably the biggest source of Ada
productivity problems is the speed of the compiler. Compilation
speeds have been steadily dropping for VAX-host, Intel-target
compilers. Some users have seen a times ten improvement here in
the last two years, with another big improvement reported to be
in the offing for a compiler to be validated in September 1987
[Ref].

For the present, however, Ada does have serious productivity
impacts which can price it out of the market for many projects
if you look at development costs only.

[Ref] Department of Defense Directive, 3405.2, Subject: Use of
Ada in Weapon Systems, Mar 87

[Ref] Policy Committee Reports From Armed Services, SIG Ada, Nov
86

[Ref] L. Silverthorn, DDC-I, Phoenix, AZ

2.3.26.2 Theoretical Solutions

The following theoretical solutions are prcposed for the
generic Ada problem:

80

Sq1, - Select Ada tools which provide good performance.
one of the most important issues which affects project
productivity is the availability and performance of automated
software development tools. Currently, some -of the
available Ada tools (compiler, runtime environment, APSE,
etc..) provide poor performance and thus reduce overall
project productivity due .to factors such as extensive
optimization requirements.

Solution Method(s) - Tools
Solution Timeframe - Short-term
SolutionApproach - Preventive

Solution j - Provide comprehensive Ada training. The
availability of comprehensive Ada training can increase project
productivity by reducing the overall learning curve and
teaching the developers to use the Ada language effectively.
Normally, for a medium to large project, these benefits more
than offset the cost of the training.

Solution Method(s) - Management
Solution Timeframe - Long-term
Solution Approach - Preventive

2.3.26.3 Actual Industry Solutions

Solution 1 - Limit the number of project variables. One
interviewee stated that his approach to increasing the
productivity of his development team was to limit the number of
new development issues that must be addressed for the project.
These issues include learning a new language (Ada), software
development method, and documentation standards.

Solution Method(s) - Management
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 2 - Develop approach to measure productivity. One
interviewee stated that he first defined what "productivity"
was for his project. He then developed an approach, both
manual and automated, to measure productivity. The results of
these productivity measurements were then used to evaluate the
impact of project decisions on productivity.

Solution Method(s) - Management
Solution Timeframe - Long-term
Solution Approach - Preventive

81

Solution I - Use automated tools as much as possible. one

critical functions (such as testing) on his project. Another
interviewee stated that he attempted to use existing automated
tools as much as possible, even though he had to modify some of
them for use on his project.

Solution Method(s) - -Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

82

2.3.27 I!PACT OF CONSTRAI.T CHECKING ON SYSTEm PZF 'ORMANCE

2.3.27.1 Problem Definition

Ada provides the capability, within the language, to perform
constraint checking. Constraint checking provides the Ada
application developer with a means to determine whether a
variable was assigned a value at runtime that is outside of its
defined range. When this event occurs, the exception
CONSTRAINTERROR is raised to signal the problem. "However,
the event that the requirements for constraint checking become
too severe, Ada provides a SUPPRESS pragma to disable this
feature.0

2.3.27.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution I - Use *SUPPRESS" pragma to disable constraint
checking at runtime. In some Ada implementations, this
pragma causes the range checking code to be removed from the
rur.time environment. In other implementations, the pragma
causes, the range checking code to be bypassed at runtime;
however, the code remains resident in the target environment.

It is also possible to selectively use the "SUPPRESS" pragma to
eliminate range checking in specific portions of the
application while continuing to perform it in other portions.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution 2 - Remove constraint checking software from RTL. If
the range checking feature of the compiler will never be used
during system operation, the code can be removed from the run-
time environment altogether (not generated by the compiler)
once the development phase is complete. This modification can
be performed by the compiler vendor.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

2.3.27.3 Actual Indust-y Solutions

83

Slt- Turn off constraint checking. One interviewee
stated that he turned off constraint checking once the
development phase had been completed to improve system
performance. He also performed constraint checking within the
applications code to reduce the need for constraint checking to
be performed by the RTS.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Preventive

84

2.3.28 INABILITY TO ASSIGN DYNAMIC TASK PRIORITIES

2.3.28.1 Problem Definition

Ada does support a capability for dynamically altering the
priority of a currently running task. The value for the pragma
PRIORITY is static and therefore cannot be changed at runtime.
Implementations may support an alternate set of priorities that
control tasking in the case where the Ada PRIORITY is identical
or undefined. This allows an implementation-defined
subpriority, which may be dynamic, to control the scheduling.
This capability is not supported by many implementations, and a
standard does not exist to help provide commonality.

2.3.28.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution 1 - Use of Ada subpriorities (if available). The Ada
subpriority feature can be used to provide the Ada task
scheduler with another piece of information to be used in
determining the order in which Ada tasks will be activated.
However, this approach is not an adequate substitute for the
ability to dynamically change the priority of a task.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution 2 - Modify Ada compiler to allow use of dynamic task
priorities. This feature is currently being considered for
inclusion into the Ada compiler, although it currently violates
MIL-STD-1815A which states that priorities must be static
values.

Solution Method(s) - Tools
Solution Timeframe - Long-term
Solution Approach - Preventive

2.3.28.3 Actual Industry Solutions

Solution I - Obtain aui Ada compiler that provides runtime
support for the use of dynamic priorities. One interviewee
stated that his project had used a compiler which provided the
capability to dynamically change the priority of a task.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

85

Solution 2 - Modify runtime software to provide dynamic
priorities. One interviewee recummended that the compiler
vendors could provide access to their runtime software so that
the Ada developers cquld implement this function, if desired.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - -Remedial

86

2.3.29 INABILITY TO PERFORM PARALLEL PROCESSING

2.3.29.1 Problem Definition

Current implementations of Ada do not support true parallel
processing, which involves distributing the processing to be
performed among a number of processor and supporting the sharing
of information concerning system programs and data between the
various processors. For current multiprocessor applications that
are implemented in Ada, an independent and stand-alone version of
the RTS must reside on each processor and no facility is provided
for communication between RTSs.

2.3.29.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution J.1 - Use of a distributed RTL (when available). A
distributed RTL will provide Ada developers with the
capability to perform true parallel processing operations
such as executing a single process which has subsets of its
functi6ns running concurrently on multiple processors.

Solution Method(s) - Tools
Solution Time frame - Long-texm
Solution Approach - Preventive

Solution 2 - Use of special-purpose hardware and software
to implement parallel proceisin,. In somae cases, the
requirement for parallel processing can be implemented through-
the use of hardware that can perform operations independent
of and concurrently with the target processor. This
hardware could consist of a numeric co-processor or an array
processor.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

2.3.29.3 Actual Industry Solutions

Solution .1 - Develop your own RTL that supports true parallel
processing. One interviewee stated that he had done this and
had also modified his applications code to use the parallel
processing capabilities. This can be a very difficult task due
to the complexities of the RTL.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

87

Solution 2 -Request that the Ada compiler vendors develop run-
time systems that support true parallel processing. One
interviewee recommended that the compiler vendors develop
parallel processing systems; however, he acknowledged that
these systems will not be available for some time.

Solution Method(s) - Management
Solution Timeframe - -Long-term
Solution Approach - Preventive

88

2.3.30 LACK OF SUPPORT FOR LOW LEVEL OPERATIONS

2.3.30.1 Prublem Definition

*Ada does not provide a mechanism to control the processor
state (including interrupt masks required for critical
sections). Although Ada provides a mechanism to directly
ma ipulate memory mapped hardware, no capability exists within
the language to access internal processor registers. Such a
mechanism would be difficult to standardize."

For example, "..changing the processor state needs to be done
in conjunction with the runtime. Since stacks used for
different states are often separate, simply changing state will
result in an error condition. Also, subsequent calls to the
runtime (possibly due to exceptions) are likely to cause
unpredictable results."

Another example is that "..there is frequently a need to enable
and disable interrupts which is performed by setting or
clearing interrupt masks. It is easy for a programmer to write
an assembly language routine to manipulate an interrupt mask
and call this routine from an Ada program. The problem occurs
because ' the assembly language is not working in conjunction
with the runtime environment provided."

2.3.30.2 Theoretical Solutions

The following theoretical solutions are proposed for the
giir~eric Ada problem:

Solution 1 - Develop low-level support softwire in Ada. By
developing the low-level support routines in Ada, the overall
software system becomes more maintainable and the low-level
routines can be more easily integrated into the Ada
application. The implementation of the low-level software can
be hidden from the reqt of the application by concealing the
implementation in a package or by writing the code in another
language and interfacing this language to Ada.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

89

RD-4=23 262 RL-MEAAPOOBLMI SOLUTION STUDY(U) SGNICRAFT INC 2/'2

UNCLSSIIEDCHICAGO IL S J MCCULLOUGH ET AL. 24 MAR 89 /125 N

soLmom loss los

nI Mllll.l..f

2 8~

-- 1 1111

-
O1101 4

1 6

lllll~ I F8

Solution - Use existing non-Ada software routines to
performing low-level operations. If these routines can meet the
system performance requirements, then it may be feasible to
make external calls to these routines from the Ada
application. However, it should be noted that it is not
always easy or possible to interface Ada programs with
external non-Ada programs; it depends on the implementation
language for the non-Ada routines.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

2.3.30.3 Actual Industry Solutions

Solution 1 - Minimize use of low-level operations. One
interviewee stated that he minimized the use of low-level
operations through the use of assembly language or external
software (via Pragma Interface) to perform the low-level
functions.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution 2 - Use in-line code statements. One interviewee
stated that he used in-line code statements to perform low-
level operations in conjunction with the RTS.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution 3 - Modify run-time software. One interviewee
recommended that the run-time software could be modified by the
applications developers to perform low-level operations such as
providing access to hardware registers and obtaining more
control over interrupts.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

90

2.3.31 INABILITY TO PERFORM TASKRESTART

2.3.31.1 Problem Definition

Applications which require that a separate thread of control
(task) be restarted at the beginning after being interrupted
part way through have difficulty mapping this requirement to
Ada.

"Certain applications do have a need to be able to have
multiple tasks, where one task might be pre-empted by a higher
priority task, and the result of the pre-emption is to make the
continuation of the pre-empted task meaningless."

"Tha standard Ada solution to this problem is to ABORT the
pre-empted task, and then re-activate a new task. This creates a
few undesirable side effects, not the least of which is
likely to be unacceptable performance degradation."

2.3.31.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution 1 - Minimize or eliminate the use of Ada task abort
and restart mechanisms. The use of the task abort and restart
mechanisms can cause unpredictable and sometimes severe side
, fects. One side effect is performance degradation due to the
overhead associated with task activation and deactivation. The
task abort mechanism is non-deterministic and involves the
deactivation of the task and all of its dependent tasks. These
side effects can affect overall system reliability.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution 2 - Modify Ada RTL to improve the task restart
process. Currently, Ada developers are considering ways to
improve the reliability of the task abort/restart process.

Solution Method(s) - Tools
Solution Timeframe - Long-term
Solution Approach - Remedial

91

2.3.31.3 Actual Industry Solutions

Solution 1 - Provide low-level tasking support. One
interviewee recommended that the compiler vendor could supply
a "low-level tasking" package that would provide the developer
with an interface to the RTS that would allow more control of
the tasking process.

Solution Method(s) - Technical
Solution Timeframe - Long-term
Solution Approach - Remedial

92

2.3.32 INABILITY TO PERFORM CYCLIC SCHEDULING IN ADA

2.3.32.1 Problem Definition

Cyclic scheduling provides the capability to perform periodic
processing by running a number of processes on a scheduled time
basis. "The Ada language can support some degree of periodic
processing by using the DELAY statement. Although some
implementations provide a reasonable mechanism for this, the
DELAY statement is not always adequate for this application."

"The problem [with the DELAY statement] is that the duration
value is a delay from the current time, not a fixed interval.
Therefore, the clock must be read and the cycle computed in the
simple expression allowed for th1e DELAY statement. However,
there is no way to ensure that an interrupt (and possibly a
higher priority task) is not executed between the time the
clock is read in the simple-expression and when the delay
duration is actually interpreted by the runtime [program]."

2.3.32.2 Theoretical Solutions

The following theoretical solutions are prorosed for the
generic Ada problem:

Solution 1 - Use knowledge of Ada scheduling algorithm to
increase system determinism. This solution attempts to
perform cyclic scheduling by mz i.ng ure of knowledge of the
Lask scheduling algorithm used i a particular Ada
implementation. This approach has two major problems. The
first is that the scheduling algorithm cai differ from Ada
implementation to Ada implementation. The second is that the
DELAY statement, which is ' used to implement cyclic
scheduling is also non-deterministic.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution 2 - Minimize use of cyclic scheduling in the system
design. This eliminates the need to address the problems of
non-determinism that are associated with cyclic scheduling in
Ada.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Preventive

93

2.3.32.3 Actual Industry Solutions

Solution I - Use an external device to perform cyclic
scheduling. One interviewee stated that he used an external
device to provide interrupts which defined operating periods
(replacing delay statements). These interrupts were used to
implement cyclic scheduling for the Ada application.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution Z - Request that compiler vendors provide a package
that performs cyclic scheduling functions. One interviewee
recommended that the compiler vendors could provide this
capability, perhaps by using a table-driven scheduler.

Solution Method(s) - Tools
Solution Timeframe - Long-term
Solution Approach - Remedial

94

2.3.33 LACK OF FLOATING POINT COPROCESSOR SUPPORT

2.3.33.1 Problem Definition

"A floating point coprocessor is a high performance numerics
processing element that extends the main processor architecture
by adding significant numeric capabilities and direct support
for floating point, extended integer, and BCD data types. The
presence of a floating point chip would increase performance in a
real-time embedded application that required floating point
operations to be performed."

"There is a lack of a standard for floating point coprocessor
support in Ada. Some compilers require a floating point chip
to perform floating point processing; other compilers cannot
utilize the chip if it is present."

2.3.33.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution 1 - Acquire an Ada compiler which provides
support for a floating point co-processor. A number of
the current Ada compilers support the use of the co-processor
If it is present in the system implementation and perform
software floating point arithmetic if it is not.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution 2 - Modify compiler to provide upport for floating
point co-processor. If the compiler does not support the use
of the floating point co-processor, the compiler vendor can
perform this modification.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution I - Develop software to utilize floating point co-
processor. The Ada developer can write software to utilize
the floating point co-processor and integrate it into the
applications program or into a utilities library.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

95

2.3.33.3 Actual Industry Solutions

Solution I - Obtain an Ada compiler which provides coprocessor
support. One interviewee stated that he had used a compiler
which provided a switch for the use of a coprocessor.

Soluticn Method(s) - Tools
Solution Timeframe - -Short-term
Solution Approach - Remedial

Solution 2 - Minimize the use of floating point computations.
One interviewee stated that he did not use floating point
computations in his Ada application. This may not be feasible
for applications that must perform heavy scientific or signal
processing.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Preventive

Solution I - Standardize the floating point operations. One
interviewee recommended that the compiler vendors attempt to
standardize on a format, such as the IEEE format, for handling
coprocessor data (floating point objects).

S6lution Method(s) - Management
Solution Timeframe - Long-term
Solution Approach - Remedial

96

2.3.34 INABILITY TO RECOVER FROM CPU FAULTS IN ADA

2.3.34.1 Problem Definition

"CPU fault tolerance is the built-in capability of a system to
provide continued correct execution in the presence of a
limited number of hardware or software faults. Highly reliable
systems require that the software continue to operate in the
presence of CPU faults."

*Although this may seem impossible, careful analysis indicates
that many faults are momentary and do not result in permanent
interruption of processing capability. However, it is
essential that the program be able to recover from such faults
and continue execution from the last check point. Ada does not
directly support the ability to recover from such CPU faults."

2.3.34.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution 1 - Modify RTL to provide support for CPU fault
recovery. The RTL would have to be modified so that in the
event of a CPU fault, control would be passed to the software
that is responsible for identifying the fault and instituting
recovery procedures. Once these activities have been
completed, the fault recovery software returns control of the
processor to the RTS.

Solution Mathod(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

2.3.34.3 Actual Industry Solutions

Solution 1 - Modify run-time software to handle CPU faults.
One interviewee stated that he had written assembly language
routines to be inserted into the run-time environment for
handling CPU faults.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

97

Solution I - Obtain an Ada compiler that provides capability to
handle CPU faults. One interviewee stated that he had obtained
an Ada compiler that provided the capability to tie interrupts
to certain CPU faults (by modifying fault vectors).

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

98

2.3.35 IMPACT OF ADA COMPILER VALIDATION ISSUES

2.3.35.1 Problem Definition

"Validation is the process of checking the conformity of an Ada
compiler to the Ada programming language [as specified in MIL-
STD-1815A] and of issuing certificates indicating compliance of
those compilers that have been successfully tested. It
should be emphasized that the intent is only to measure
conformance with the standard. Any validated compiler may
still have bugs and poor performance, since performance is not
being measured by the validation tests."

"To obtain a validation certificate, a compiler implementer
must exercise an Ada Compiler Validation Capability (ACVC) test
suite. The current level is Version 1.9 and it contains a
series of over 2500 tests designed to check a compiler's
conformance to the DoD's Ada language standard, ANSI MIL-STD-
1815A (1983)."

"With the initial validation phase completed for most
compilers, the compiler implementers are (finally] shifting
their emphasis to concentrate on improving the efficiency of
the generated code (code optimization) and providing more user
configurability of the runtime environment."

2.3.35.2 Theoreticral Solntions

The following theoretical solutiois are proposed for the
generic Ada problem:

Solution 1 - Evaluate need for project-validdtion of Ada
compiler. If the project-specific requirements for compiler
performance are critical enough to require modifications to the
cnmpiler, the impact of the project-validation process must be
considered. This includes (re)certification of the project-
validated status and maintenanca of the modified compiler.

Solution Method(s) - Tools
Solution Timeframe - Long-term
Solution Approach - Preventive

Solution _ - Ensure potential and plans for revalidation of
Ada compiler. Since the Ada compiler must currently be
revalidated every year, the compiler vendor's plans to support
the revalidation process must be considered during the compiler
selection process.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Preventive

99

Solution . - Eiuate results of proposed ACVC performance
tests (when :a"ilable). The Ada compiler validation team is
currently n--sidering adding a number of performance tests to
the compiler validation process. The addition of these could
have a significant positive impact on the quality and
performance of available Ada compilers.

Solution Method(s) - Tools
Solution Timeframe - Long-term
Solution Approach - Preventive

2.3.35.J Actual Industry Solutions

Solution .j - Provide means during Ada compiler validation
process to perform additional tests. A number of interviewees
stated that the proposed ACEC tests would provide additional
indications of compiler performance.

Solution Method(s) - Tools
Solution Timeframe - Long-term
Solution Approach - Preventive

100

2.3.36 INABILITY TO PERFORM ASYNCHRONOUS TASK

2.3.36.1 Problem Definition

*The Ada rendezvous model-uses a synchronous mechanism to
communicate between tasks. Many applications require that a
signaling task not be delayed until the signaled task is ready
to accept the signal. The mechanism used to communicate
between tasks in the Ada rendezvous model is that both tasks
must be synchronized together before any data or control
information can be transferred."

"The Ada solution to this issue is to place an intermediate
task between the signaling task and the waiting task. This
intermediate task would always be ready for a rendezvous and
would effectively buffer the transaction to provide
asynchronous communications. The impact is to create an
additional (logical) context switch."

2.3.36.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution 1 - Place an intermediate task between the signaling
task and the waiting task. The use of an intermediate task to
wait for a rendezvous and provide a buffer for the transaction
has become the classical Ada solution to this problem.
However, this solution has , drawback; the effect of using the
intermediate task is to create an additional context switch,
which increases system overhead.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

2.3.36.3 Actual Industry Solutions

Solution j - Use buffering mechanism. A number of interviewees
stated that they used a buffer task to implement asynchronous
communications between tasks.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

101

Solution 2 - Obtain an Ada compiler which provides run-time
support for asynchronous tasking. One interviewee stated that
he used an Ada compiler which provided non-Ada support for
asynchronous tasking through the use of simple "signal and
wait" operations.

Solution Method(s) - Tools
Solution Timeframe - 'Short-term
Solution Approach - Remedial

102

2.3.37 LACK OF IMiPLEMEW1AAION OF CHAPTER 13 FEATURES

2.3.37.1 Problem Definition

"Many of the features in Chapter 13 [of the Ada Reference
Manual] are not implemented in current commercially available
compilers today. Chapter 13 of the Reference Manual for the
Ada Programming Language is titled, ""Representation Clauses
and Implementation- Dependent Features"". These features are
optional and therefore a compiler can have the status of
""validated"" without any of these features implemented.
However, many people feel that Chapter 13 is required for real-
time embedded applications."

The features addressed in Chapter 13 of the Ada Reference
Manual allow an Ada application developer to perform systems
programming tasks by providing a physical representation of the
underlying machine. These features include:

* Representation Clauses

* Length Clauses

* Enumeration Representation Clauses

* Record Representation Clauses

* Address Clauses

* Address Clduses For £nterrupts

* Change Of RepresentatLon

* The Package SYSTEM

* System-Dependent Named Numbers

* Representation Attributes

* Representation Attributes Of Real Types

* Machine Code Insertions

* Interface To Other Languages

103

2.3.37.2 Theoretical Solutions

The following theoretical solutions are proposed for the
generic Ada problem:

Solution 1 - The Ada compiler vendor can implement desired
Chapter 13 features. The implementation of Chapter 13 features
is "optional"; a compiler can be validated without having any
of these features implemented. However, a number of Ada
developers feel that these features are necessary for real-time
embedded applications. The Ada developer can request that the
compiler vendor implement some or all of these features,
depending on which ones were supplied originally with the
compiler.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution 2 - Ada applications developers can develop their own
implementation of Chapter 13 features. If desired, the Ada
developer can implement some or all of the Chapter 13 features,
although there could be some difficulty integrating these
features into an existing run-time environment.

Solution Method(s) - Technical
Solution Timeframe - Short-term
Solution Approach - Remedial

2.3.37.3 Actual Industry Solutions

Solution 1 - Obtain a compiler which provides support for
some of the Chapter 13 features. One interviewee stated that
he obtained a compiler which supported most of the Chapter 13
features. He developed software for his application which
performed those desired Chapter 13 functions that were not
provided by the compiler.

Solution Method(s) - Tools
Solution Timeframe - Short-term
Solution Approach - Remedial

Solution . - Provide additional ACVC tests that check for
Chapter 13 features. One interviewee stated that the newest
suite of ACVC tests contains a number of additional tests to
check for Chapter 13 features.

Solution Method(s) - Tools
Solution Timeframe - Long-term
Solution Approach - Preventive

104

3. ANALYSIS AND CONCLUSIONS

3.1 Analysis

The following is a summary-of the analysis of the solutions
obtained during the Ada Problem/Solution Study.

1) The majority of actual solutions proposed for the performance-related
generic Ada problems were resolved by revising the system design
and through the use of tools, were short-term solutions, and were
remedial in nature.

2) Most of the solutions proposed for the management-related
generic Ada problems were resolved via management means or
through the use of methods, were short-term and preventive in
nature.

3) Most of the actual solutions proposed for the tool-related
generic Ada problems were resolved by modifying the tools or
acquiring new tools, were short-term solutions and were
remedial in nature.

4) Overall, the large majority of the solutions were short-term
in nature.

3.2 Conclusions

The following is a sunmmary of the conclusions obtained as a
result of the Ada Problem/Solution Study:

1) The short-term, remedial nature of the solutions proposed for
the performance-related generic Ada problems reflects the general
inexperience of the Ada community in developing real-time
embedded Ada applications. This inexperience causes the
developers to address the generic Ada problems in a "crisis"
fashion; that is, the problem is not considered until it actually
occurs.

2) The short-term, preventive nature of the management
solutions to the generic Ada problems reflects a growing
understanding of the up-front investment and planning that are
required to successfully develop Ada applications. This up-front
investment include training and acquisition of Ada tools.
However, Ada developers still are not performing enough long-term
planning to support their Ada projects.

105

3) The short-term, preventive nature of the tool-related generic
Ada problems reflects a growing understanding of the importance
of automated tools to support the development of Ada
applications. However, it also reflects a lack of long-range
planning to acquire the variety of tools that are required to
develop complex Ada applications.

4) The overall short-term nature of the proposed solutions
reflects a strong need for additional education in the areas of
Ada software development planning and strategy.

106

4. RESULTS AND RECOMMENDATIONS

4.1 Results

The following is a summary Qf the results that were obtained
during the Ada Problem/Solution Study.

1) A number of companies are enlisting the aid of compiler tool
vendors to assist in solving functional and performance problems
that stem from the Ada compiler and RTL.

2) Companies are attempting to identify potential problems early
in the development process by assembling teams of "Ada gurus" to
provide technical support to the development team.

3) Compiler improvements are reducing the need for the use of
alternate methods (redesign, optimization, tool modification,
etc..) to improve system performance for Ada applications. These
improvements include more efficient code generation, specialized
pragmas,,and others.

4) Ada software tool vendors are building a larger number and
variety of Ada tools for use in developing Ada applications.
These tools are providing increased productivity and performance
for Ada development efforts.

5) Ada developers are spending more time up front evaluating Ada
tools to determine their suitability for use on a particular
application. Better benchmarking techniques and data are
becoming available for analyzing the performance of Ada tools.

6) Ada developers are reducing performance problems by providing
guidelines for the use of certain Ada constructs which can
adversely impact system performance. These guidelines are
dependent on the characteristics of the application that is being
developed and the Ada compiler that is being used.

7) Ada developers are improving system performance and
functionality by performing their own modifications to the Ada
RTL. These improvements include tailoring and/or configuring the
RTL, writing additional code to perform required functions, and
rewriting portions of the RTL.

107

* 8) Ada developers are still writing portions of their
applications in assembly language to improve system efficiency
and performance. This practice is expected to continue until the
code generated by Ada compilers improves significantly.

9) Developers are designing system architectures for their
applications which reflect the characteristics of the Ada
applications that are being built. These architectures attempt
to implement certain Ada features, such as context switching, in
a more efficient manner.

10) Developers are providing more comprehensive Ada training to
their employees. This training includes areas such as use of the
Ada language, Ada software development methodologies, Ada
software project management, Ada "lessons learned", and real-time
Ada programming techniques. The availability of more
comprehensive Ada training courses is increasing the productivity
of the Ada software development team.

11) The proposed revisions to the Ada compiler definition, to be
known as Ada 9X, are expected to resolve some of the problems
currently facing Ada developers. These revisions are based on
the feedback that has been provided by the Ada community during
the first phase of Ada usage.

12) Ada standards and guidelines are now available and are being
used by the Ada community. These standards are being refined as
feedback is obtained from the Ada users. The availability of
these standards is providing needed guidance to some of the less
experienced Ada developers.

Figure 3, entitled "Problem Solutions Results", provides a
summary of the study results. This figure describes the solution
methods used to resolve the generic Ada problems, and the
solution timeframes and approaches for both the theoretical and
actual problem solutions.

4.2 Recommendations

The following is a summary of the recommendations that were made
as a result of the Ada Problem/Solution Study.

1) Ada developers must obtain extensive education and training in
the areas of Ada software development strategy, planning, project
management, and problem identification/resolution. This can be
obtained through formal training or informally from the
experiences of other Ada developers.

108

M0 (0 C

C/,,

LI

C,

wL z

0 > 0
0> j CD

LLI 0

00

LLJ w

a. 0

0 0 w

I- z 0=L -J

-J0 0 Z I--
0 WU 0 <WL
C,,I-I

108-1

o I-

C/,

Ci,02 -JLU

0 z

< I w I-I
cv, M (0 0 0Jo 00 >w

LUI

< 0

CC z
00 0

0 v
U. a:

a.L

I- L

LI cc z >J

o = 0 0w
cc, C/, >J C/

10 8-2

CO CCO

cc m

CC CMM

'C 0

0 -J0

0

00

U/)
0 (OC

CD 0
CID wUFo w 0-0z 0

z <20
K0 0 wU a

F-zCl) CD0=-J <
-J00 z Fo wi 0 u

C) -I

108-3

wo 0 (

C/,

ww

z
0- 0

wo 0 0e -j
> 0

0 cc
0

Cl) 0 a.

0 (0

CJ Lo~

0w
CIw

z 0

w -
0.2 o0 w 0

F-zCD 0
D z -j 7=

-j Q 0 z Io w 0
C,, F- F-

108-4

'ItI

uI OLC) Cco cr)
z
0

w. Clo
w
C3

- a: z
>1.3 0 0I

0 O L O' cr) -J
a:CM CO 0

0l -J)

-o 0

0 z
0 0- OM P.%ON 0

in"ao C')w (0

LU 0
cc) CL,

0 z 0

0a wo- 0
0 0

0 w 0 <w
Cl, -I

108-5

wcn
a.C~

a. w

< z
0

z ~I--

LL-J

0 in

~0

0 z

00

w
00

m F-wLA
0 W a-r

-Jz 0w -
am. Z 0o0 w a

0J z
0J 0L 0 Z I
o0 w 0

Cl, I - 6I

2) There is a need for guidelines among the members of the Ada
community, to include developers and tool vendors, and customers
(uich as the Government). However, these guidelines should be
flexible enough to allow experimentation among the members of the
Ada community, possibly leading to the establishment of industry
and language standards.

3) The Ada user community must continue to put pressure on the
Ada compiler and tool vendors to produce Ada tools that have much
improved functionality and performance as well as higher
reliability. This is very important in establishing the
credibility of Ada for use in the development of real-time
embedded applications.

4) The Ada community must be willing to invest their own
resources (money, time, personnel, tools, training) to improve
the current Ada development environment. It is not enough to
expect the Government to fund all of the necessary investment in
Ada technologies. This is becoming increasingly important with
the entry of Ada into the commercial sector.

109

APPENDIX A: DEFINITIONS

Ada-oriented: The ability of a method to map the software design
directly into the use of Ada language constructs such as
packages, tasks, and generics.

Approach: A way of beginning or managing an effort; a way of
analyzing, planning, or directing a project; a way of conducting
operations. A scheme is an approach when it suggests ways to
identify goals initially and/or suggests, at an abstract level,
ways to proceed without goals. [Tele 87]

Auto Coding: Auto coding represents the capability, using a
software tool, to automatically generate Ada source code
statements. The tool user must provide specification information
such as data definitions, module names, call decisions, etc..
[PJAC87]

Data Visibility: The extent to which a method provides visibility
into the data that is used within an Ada software system. This
visibility includes such issues as data flows, data definitions,
and static vs. dynamic data.

Design 'Consistency: The extent to which an Ada software
development method provides guidelines for consistent application
of the method's principles. The benefit of this feature is that
it encourages the development of a consistent software design
among the different parts and participants of a software project.

Design Quality: The extent to which a method provides guidelines
for determining and evaluating the quality of Ada software
desi 1 as. This feature also provides a measure of the quality of
the software that is designed using a method (reliability,
maintainability, testability, portability, correctness,
efficiency, understandability, etc..)

Ease of Learning: The ease with which an Ada-oriented method can
be learned. This includes factors such as the amount of training
that is recommended (based on the complexity of a method), the
levels of training that are recommended (beginner, intermediate,
and advanced), and the amount of time that is required before a
software engineer can effectively use a method.

Ease of Use: The ease with a method can be used to design and
implement an Ada software system. Ease of use is based on the
simplicity, completeness, and consistency of the underlying
method's principles, terminology, symbology, and products
(documentation and deliverables).

Efficiency: The extent to which a software component fulfills its
purpose with minimum use of computer resources.

110

Information Hiding: The extent to which a method supports
information hiding for Ada software systems (such as through the
use of packages). The principle of information hiding suggests
that modules should be specified and designed so that information
(procedure and data) contained within a module is inaccessible to
other modules that have no need for such information. [SEPA]

Mfithod: A definite, established, logical, or systematic plan.
The steps and purposes have been thought beforehand in detail. A
scheme is a method when it guides the user to a predictable
result, given an appropriate set of starting conditions. [Tele
87]

Methodology: The study of methods. [Tele 87]

Methodology Tools: A measure of the availability and maturity of
automated software tools which implement an Ada-oriented software
method. The issue of availability involves the variety of tools
that exist, the hardware/software environments in which these
tools run, and the interface between these tools and the APSE.

PAMA: Process Abstraction Method for Embedded Large
Applications, a trademark of George Cherry for his Ada design
method. "

Portability: The ease with which a software component can be made
fnmctional in a different application or target computer
architecture.

) vblem Definition: The extent to which a method allows a
softwaxe developer to define and represent a problem and its
9coposed. solution during the developme-nt of an Ada software
system. This is based on the completeness of the underlying
principles, terminology, and symbology of a method. It is a
measure of the ability of a method to model and represent the
real-world.

Process State: The extent to which a method provides information
concerning the state of the various processes which make up an
Ada software system. This includes guidelines to establish state
changes for Ada design efforts and guidelines for using symbology
to represent state changes.

Process Visibility: The extent to which a method provides
visibility into the functions and interfaces of the processes
within an Ada software system. This visibility includes such
issues as process control flow, concurrency (tasks), and external
control (interrupts).

Program and Data Structuret The extent to which a method provides
guidelines for using Ada language features which impose program
and data structure. The program/data structure can take a number
of forms, to include a flat hierarchy or a layered hierarchy.

111

Real-Time Ada: A computer program written in the Ada language
which implements one or more real-time functions, usually
triggered by interrupts.

Real-Time Function: Any system function (hardware, software or a
combination) which is considered to have faulted if it has not
been completed within a specified time after a signal to start.

Reusability: The ease with which a software component can be
used or modified for use in another application.

Runtime Environment (RTE): The RTE consists of three functional
areas: abstract data structures, code sequences, and predefined
subroutines. It includes all of the runtime support routines,
the conventions between the runtime routines and the compiler,
and the underlying virtual machine of the target computer.
"Virtual" is used in the sense that it may be a machine with
layered software (a host operating system). An RTE does not
include the application itself, but includes everything the
application can interact with. In the event that there isn't any
operating system layer (the bare machine target), the RTE
includes those low-level functions found in an operating system.

Runtime Library (RTL): The RTL is a library of procedures and
functions from which the RTS routines are selected.

Runtime System (RTS): The RTS is the set of subprograms which
may be invoked by linking, loading, and executing object code
generated by an Ada compiler. If these subprograms use or depend
upon the services of an operating system, then the target runtime
system includes those portions of that operating system. These
predefined subroutines are chosen from the RTL for that Ada
compilation system.

Task: Any program unit which is designed to be able to operate in
parallel with other program units and to synchronize with them
where necessary.

Traceability: The extent to which an Ada-oriented software
development method provides the ability to validate the products
of the various steps of a method and to verify that the input to
each step fulfills the requirements levied by the previous step.

112

